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Grigore Roşu1 Dorel Lucanu2

1Department of Computer Science
University of Illinois at Urbana-Champaign, USA

grosu@illinois.edu

2Faculty of Computer Science
Alexandru Ioan Cuza University, Iaşi, Romania
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Introduction CC History

Circular Coinduction: History

1998 first implementation of CC in BOBJ system [J. Goguen & K.
Lin & G. Roşu, ASE 2000]

2000 CC formalized as a inference rule enriching hidden logic [G.
Roşu & J. Goguen, written in 1999]

2002 CC described as a more complex algorithm [J. Goguen & K.
Lin & G. Roşu, WADT 2002]
(a first version for special contexts, case analysis)

2005 CC implemented in CoCASL [D. Hausmann& T.
Mossakowski & L. Schröder, FASE 2005]

2006 CC implemented in Maude (first version of CIRC) [D.
Lucanu & A. Popescu & G. Roşu]

2007 first major refactoring of CIRC [CALCO Tools, 2007]
(Maude meta-language application, regular strategies as
proof tactics, simplification rules)

2009 CC formalized as a proof system [CALCO 2009, this paper]
– second major refactoring of CIRC [CALCO Tools, 2009]
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Introduction Behavioral Equivalence, intuitively

Behavioral Equivalence: Intuition 1/2

Behavioral equivalence is the non-distinguishability under experiments

Example of streams:

a stream (of bits) S is an infinite sequence b1 : b2 : b3 : . . .
the head of S : hd(S) = b1

the tail of S : tl(S) = b2 : b3 : . . .

experiments:
hd(∗:Stream), hd(tl(∗:Stream)), hd(tl(tl(∗:Stream))), . . .

the basic elements upon on the expriments are built (here hd(∗) and
tl(∗)) are called derivatives

application of an experiment over a stream: C [S ] = C [S/∗]
two streams S and S ′ are behavioral equivalent (S ≡ S ′) iff
C [S ] = C [S ′] for each exp. C

for this particular case, beh. equiv. is the same with the equality of
streams

showing beh. equiv. is Π0
2-hard (S. Buss, G. Roşu, 2000, 2006)
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Introduction Behavioral Equivalence, intuitively

Behavioral Equivalence: Intuition 2/2

(not in this paper)

Example of infinite binary trees (over bits):

a infinite binary tree over D is a function T : {L,R}∗ → D
the root of T : T (ε)
the left subtree T!: T!(w) = T (Lw) for all w
the right subtree Tr : Tr (w) = T (Rw) for all w

knowing the root d , T! and Tr , then T can be written as d/T!,Tr\.
the derivatives: root(∗:Tree), left(∗:Tree), and right(∗:Tree)

the experiments: root(∗:Tree), root(left(∗:Tree)),
root(right(∗:Tree)) and so on

two trees T and T ′ are beh. equiv. (T ≡ T ′) iff
C [T ] = C [T ′] for each exp. C
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Introduction Behavioral Specifications, intuitively

Behavioral Specifications: Intuition 1/2

Streams:

derivatives: hd(∗ : Stream) and tl(∗ : Stream)

beh specs are derivative-based specs
STREAM:
Corecursive spec Behavioral spec

zeroes = 0 : zeroes
hd(zeroes) = 0
tl(zeroes) = zeroes

ones = 1 : ones
hd(ones) = 1
tl(ones) = ones

blink = 0 : 1 : blink
hd(blink) = 0
tl(blink) = 1 : blink

zip(B : S ,S ′) = B : zip(S ′,S)
hd(zip(S ,S ′)) = hd(S)
tl(S ,S ′) = zip(S ′,S)

for streams, this can be done with STR tool (see H. Zantema’s tool
paper)
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Introduction Behavioral Specifications, intuitively

Behavioral Specifications: Intuition 2/2

Infinite binary trees (TREE):

derivatives: root(∗:Tree), left(∗:Tree), and right(∗:Tree)

beh specs are derivative-based specs

Corecursive spec Behavioral spec

ones = 1/ones, ones\
root(ones) = 1

left(ones) = ones

right(ones) = ones

b/T!,Tr\ + b′/T ′
!,T

′
r\ =

b∨b′/T!+T ′
!,Tr+T ′

r\

root(T + T ′) = root(T ) ∨ root(T )

left(T + T ′) = left(T ) + left(T ′)

right(T + T ′) = right(T ) + right(T ′)

thue = 0/thue, thue + one\
root(thue) = 0

left(thue) = thue

right(thue) = thue + one
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Introduction Circular Coinduction, intuitively

Circular Coinduction: Intuition 1/2

– the goal is to prove that zip(zeroes, ones) ≡ blink holds in STREAM
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Introduction Circular Coinduction, intuitively

Circular Coinduction: Intuition 2/2

– the goal is to prove that ones + T ≡ ones holds in TREE

– a more challenging property: thue + one = not(thue)
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Circular Coinduction Proof System Formal Framework

Formal Framework 1/2

A behavioral specification consists of:

a many-sorted algebraic spec B = (S ,Σ,E )
(S = set of sorts, Σ = set of opns, E = set of eqns)

a set of derivatives ∆ = {δ[∗:h]}
δ[∗:h] is a context
the sort h of the special variable ∗ occuring in a derivative δ is called
hidden; the other sorts are called visible

each derivative can be seen as an equation transformer:
if e is t = t ′ if cond , then δ[e] is δ[t] = δ[t ′] if cond
∆[e] = {δ[e] | δ ∈ ∆}
an entailment relation &, which is reflexive, transitive, monotonic, and
∆-congruent (E & e implies E & ∆[e])
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Circular Coinduction Proof System Formal Framework

Formal Framework 2x/2

Experiment:
each visible δ[∗:h] ∈ ∆ is an experiment, and
if C [∗:h′] is an experiment and δ[∗:h] ∈ ∆, then so is C [δ[∗:h]]

Behavioral satisfaction: B ! e iff:
B & e, if e is visible, and B & C [e] for each experiment C , if e is hidden

Behavioral equivalence of B: ≡B
def
= {e | B ! e}

A set of equations G is behaviorally closed iff
B & visible(G) and ∆(G − B•) ⊆ G,
where B• = {e | B & e}

Theorem

(coinduction) The behavioral equivalence ≡ is the largest behaviorally
closed set of equations.
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Circular Coinduction Proof System Coinductive Circularity Principle

The Freezing Operator

– is the most important ingredient of CC

– it inhibits the use of the coinductive hypothesis underneath proper
contexts;

– if e is t = t ′ if cond , then its frozen form is t = t ′ if cond
( - : s → Frozen)

– & is extended for frozen equations s.t.
(A1) E ∪ F & e iff E & e, for each visible eqn e;
(A2) E ∪ F & G implies E ∪ δ[F ] & δ[G] for each δ ∈ ∆, equivalent to
saying that for any ∆-context C , E ∪ F & G implies E ∪ C [F ] & C [G]

Theorem

(coinductive circularity principle) If B is a behavioral specification and

F is a set of hidden equations with B ∪ F & ∆[F ] then B ! F .
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Circular Coinduction Proof System The Proof System

Circular Coinduction Proof System

·
B ∪ F !! ∅ [Done]

B ∪ F !! G, B ∪ F & e
B ∪ F !! G ∪ { e } [Reduce]

B ∪ F ∪ { e } !! G ∪ ∆[e]

B ∪ F !! G ∪ { e }
, [Derive]

if e hidden
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Circular Coinduction Proof System The Proof System

Soundness

Theorem

(soundness of circular coinduction) If B is a behavioral specification

and G is a set of equations such that B !! G is derivable using the
Circular Coinduction Proof System, then B ! G.

The proof is monolithic and, intuitively, the correctness can be explained in different
ways:
(1) since each derived path ends up in a cycle, it means that there is no way to show the
two original terms behaviorally different by applications of derivatives;

(2) the obtained circular graph structure can be used as a backbone to “consume” any
possible experiment applied on the two original terms;

(3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas
inferred in order to prove the original task;

(4) when it stabilizes, it “discovers” a relation which is compatible with the derivatives
and is the identity on data, so the stabilized set of equations is included in the
behavioral equivalence;

(5) it incrementally completes a given equality into a bisimulation relation on terms
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Circular Coinduction Proof System The Proof System

Example

[Done]
STREAM ∪

{
zip(odd(S), even(S)) = S

}
!! ∅

STREAM ∪
{

zip(odd(S), even(S)) = S
}

# hd(zip(odd(S), even(S))) = hd(S)

[Reduce]

STREAM ∪
{

zip(odd(S), even(S)) = S
}

!!
{

hd(zip(odd(S), even(S))) = hd(S)
}

STREAM ∪
{

zip(odd(S), even(S)) = S
}

# tl(zip(odd(S), even(S))) = tl(S)

[Reduce]

STREAM ∪
{

zip(odd(S), even(S)) = S
}

!!






hd(zip(odd(S), even(S))) = hd(S) ,

tl(zip(odd(S), even(S))) = tl(S)





[Derive]

STREAM !!
{

zip(odd(S), even(S)) = S
}
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G. Roşu, D. Lucanu (UIUC, UAIC) Circular Coinduction 08/09/2009, CALCO 2009 18 / 21



Conclusion

Related Approaches

Context induction [R. Hennicker, 1990]
– exploits the inductive definition of the experiments [used also here in CCP]
– requires human guidance, generalization of the induction assertions

Observational Logic [M. Bidoit , R. Hennicker , and Al. Kurz, 2002]
– model based (organized as an institution)
– there is a strong similarity between our beh equiv ! and their infinitary proof system

Coalgebra[e.g., J. Adamek 2005, B. Jacobs and J. Rutten 1997] – used to study the
states and their operations and their properties
– final coalgebras use to give (behavioral) semantics for processes
– when coalgebra specs are expressed as beh. specs, CC Proof System builds a
bisimulation

Observational proofs by rewriting [A. Bouhoula and M. Rusinowitch, 2002]
– based on critical contexts, which allow to prove or disprove conjectures

A coinductive calculus of streams [Jan Rutten, 2005]
– almost all properties proved with CIRC
– extended to infinite binary trees [joint work with Al. Silva]
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Conclusion

Future Work

Theoretical apsects:

– in some cases the freezing operator is too restrictive ⇒ extend the proof
system with new capabilities (special contexts, generalizations,
simplifications etc)
– productivity of the behavioral specs vs. well-definedness
– (full) behavioral specification of the non-deterministic processes
(behavioral TRS?)
– complexity of the related problems

CIRC Tool:

– automated case analysis
– more case studies (e.g., behavioral semantics of the functors)
– the use of CC as a framework (its use in other applications)
– its use in program verification and analysis
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Thanks!
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