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ceiliztor
Circular Coinduction: History

1998 first implementation of CC in BOBJ system [J. Goguen & K.
Lin & G. Rosu, ASE 2000]

2000 CC formalized as a inference rule enriching hidden logic [G.
Rosu & J. Goguen, written in 1999]

2002 CC described as a more complex algorithm [J. Goguen & K.
Lin & G. Rosu, WADT 2002]

(a first version for special contexts, case analysis)

2005 CC implemented in CoCASL [D. Hausmann& T.
Mossakowski & L. Schroder, FASE 2005]

2006 CC implemented in Maude (first version of CIRC) [D.
Lucanu & A. Popescu & G. Rosul]

2007 first major refactoring of CIRC [CALCO Tools, 2007]
(Maude meta-language application, regular strategies as
proof tactics, simplification rules)

2009 CC formalized as a proof system [CALCO 2009, this pap
— second major refactoring of CIRC [CALCO Tools, 2009@
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Introduction Behavioral Equivalence, intuitively

Behavioral Equivalence: Intuition 1/2

Behavioral equivalence is the non-distinguishability under experiments

Example of streams:
@ a stream (of bits) S is an infinite sequence by : by : b3 : ...

the head of S: hd(S) = b

the tail of S: t/(S) =bo: b3 : ...

experiments:

hd(x:Stream), hd(tl(x:Stream)), hd(tl(tl(x:Stream))), ...

the basic elements upon on the expriments are built (here hd(x) and
tl(x)) are called derivatives

o application of an experiment over a stream: C[S] = C[S/x]
@ two streams S and S’ are behavioral equivalent (S = 5') iff

C[S] = C[S'] for each exp. C

for this particular case, beh. equiv. is the same with the equality of
streams

showing beh. equiv. is I_Ig—hard (S. Buss, G. Rosu, 2000, 2006) M
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Introduction Behavioral Equivalence, intuitively

Behavioral Equivalence: Intuition 2/2

(not in this paper)
Example of infinite binary trees (over bits):

@ a infinite binary tree over D is a function T : {L,R}* — D
the root of T: T(¢)
the left subtree Ty Ty(w) = T(Lw) for all w
the right subtree T,: T,(w) = T(Rw) for all w

@ knowing the root d, Ty and T,, then T can be written as d/ Ty, T,\.
o the derivatives: root(x: Tree), left(x: Tree), and right(x: Tree)

o the experiments: root(x: Tree), root(left(x: Tree)),
root(right(x: Tree)) and so on

@ two trees T and T’ are beh. equiv. (T = T') iff
C[T] = C[T'] for each exp. C

G
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Introduction Behavioral Specifications, intuitively

Behavioral Specifications: Intuition 1/2

Streams:
o derivatives: hd(x : Stream) and t/(x : Stream)

@ beh specs are derivative-based specs

STREAM:
Corecursive spec Behavioral spec

hd(zeroes) = 0

tl(zeroes) = zeroes

hd(ones) =1

t/(ones) = ones

hd(blink) =0

tl(blink) = 1: blink

hd(zip(S,S")) = hd(S)

tl(S,S') = zip(S', S)

o for streams, this can be done with STR tool (see H. Zantema's tog)|
paper) M
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zeroes = 0 : zeroes

ones = 1 : ones

blink = 0:1: blink

zip(B:S,S") =B : zip(5',S)




Behavioral Specifications, intuitively
Behavioral Specifications: Intuition 2/2

Infinite binary trees (TREE):

o derivatives: root(x:Tree), left(x: Tree), and right(x: Tree)

@ beh specs are derivative-based specs

Corecursive spec

Behavioral spec

ones = 1/ones, ones\

root(ones) = 1
left(ones) = ones

right(ones) = ones

b/ Ty, T,\ + b’/Tlf,
bvb T+ T), T,+T,

T\ =

A\

root(T + T') = root(T) V root(T)
left(T + T') = left(T) + left(T')
right(T + T') = right(T) + right(T")

thue = 0/thue, thue + one\

root(thue) =0
left(thue) = thue

right(thue) = thue + one 2
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Circular Coinduction, intuitively
Circular Coinduction: Intuition 1/2

— the goal is to prove that zip(zeroes, ones) = blink holds in STREAM

zip(zeroes,ones) = blink< -

/\ N

zip(ones,zeroes) = 1:blink

1Y/ zip(zeroes,ones) = blink

G

G. Rosu, D. Lucanu (UIUC, UAIC) Circular Coinduction 08/09/2009, CALCO 2009 9/21



Circular Coinduction, intuitively
Circular Coinduction: Intuition 2/2

— the goal is to prove that ones + T = ones holds in TREE

.>» ones +1 = ones <~ _

~
7’ N
/ N
/ root \
: \
right
left 8 \
/ \

! 1 vrooy(T) = 1 vV '

\
ones +left(T) = ones  ones +right(T) = ones

— a more challenging property: thue + one = not(thue) M
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Circular Coinduction Proof System
Plan

© Circular Coinduction Proof System
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Circular Coinduction Proof System Formal Framework

Formal Framework 1/2

A behavioral specification consists of:
@ a many-sorted algebraic spec B = (S,%, E)
(S = set of sorts, ¥ = set of opns, E = set of eqns)
@ a set of derivatives A = {J[*:h]}
d[*:h] is a context
the sort h of the special variable * occuring in a derivative § is called
hidden; the other sorts are called visible

@ each derivative can be seen as an equation transformer:
if eis t =t' if cond, then d[e] is §[t] = d[t'] if cond
Ale] = {d[e] | 6 € A}
@ an entailment relation I, which is reflexive, transitive, monotonic, and
A-congruent (E F e implies E - Ale])
G

G. Rosu, D. Lucanu (UIUC, UAIC) 08/09/2009, CALCO 2009 12 /21



Circular Coinduction Proof System Formal Framework

Formal Framework 2x/2

Experiment:

each visible 0[x:h] € A is an experiment, and

if C[*:h'] is an experiment and §[*:h] € A, then so is C[d[x:h]]
Behavioral satisfaction: B lIF e iff:

B e, if e is visible, and B - C[e] for each experiment C, if e is hidden

Behavioral equivalence of B: = def {e | Bl e}

A set of equations G is behaviorally closed iff
B I visible(G) and A(G — B®) C G,
where B* = {e | B+ e}

Theorem

(coinduction) The behavioral equivalence = is the largest behaviorally
closed set of equations.

Ty
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Circular Coinduction Proof System Coinductive Circularity Principle

The Freezing Operator

— is the most important ingredient of CC

— it inhibits the use of the coinductive hypothesis underneath proper
contexts;

—ifeist=t'if cond, then its frozen form is = if cond
(=]: s — Frozen)

— I is extended for frozen equations s.t.

(Al) EUF F[e] iff E e, for each visible eqn e;

(A2) EUFFG implies E UOJ[F]tF 0[] for each § € A, equivalent to
saying that for any A-context C, E UF + G implies E U C[F] + C[d]

Theorem

(coinductive circularity principle) If B is a behavioral specification and
F is a set of hidden equations with BU| F || A[F]| then B II- F.

[R—4
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UG AT
Circular Coinduction Proof System

BUFIFO( [Done]

BUFIF®G, BUZF +[e]

BUFIFC Ggu{[e]} [Reduce]
BuFu{el} -2 G U|Ale] [Derive]
BUFIFOGU{le]} it ¢ hidden
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Circular Coinduction Proof System The Proof System
Soundness

Theorem

(soundness of circular coinduction) If B is a behavioral specification
and G is a set of equations such that B IIF© is derivable using the
Circular Coinduction Proof System, then BlI- G.

The proof is monoiithic and, intuitiveiy, the correctness can be explained in different
ways:

(1) since each derived path ends up in a cycle, it means that there is no way to show the
two original terms behaviorally different by applications of derivatives;

(2) the obtained circular graph structure can be used as a backbone to “consume” any
possible experiment applied on the two original terms;

(3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas
inferred in order to prove the original task;

(4) when it stabilizes, it “discovers” a relation which is compatible with the derivatives
and is the identity on data, so the stabilized set of equations is included in the

behavioral equivalence;

(5) it incrementally completes a given equality into a bisimulation relation on termM
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Circular Coinduction Proof System The Proof System
Example

[Done]
STREAM U

STREAM U

[t et

zip(odd(S), even(S)) : I-° ¢
2ip(0dd(s), even(s)) |=[S]} | nd(zip(0dd(s), even(s))) | =|nd(s)]

[Reduce]
zip(odd(S), even(s)) [=[s]! 19 {\ nd(zip(0dd(8), even(s))) | =| hd(s) \}
zip(odd(S), even(s)) | = - £1(zip(0dd(8), even(s))) | =| £1(s) |

STREAM U

STREAM U

N

[Reduce]
| hd(zip(0dd(s), even(s))) | = | nd(s) |

STREAM U {‘ zip(0dd(s), even(s)) | = } IO

| t1(zip(0dd(s), even(s))) | = | £1(s) |
[Derive]
STREAM I-© {‘ zip(odd(S), even(S ‘ = }
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Related Approaches

Context induction [R. Hennicker, 1990]
— exploits the inductive definition of the experiments [used also here in CCP]
— requires human guidance, generalization of the induction assertions

Observational Logic [M. Bidoit , R. Hennicker , and Al. Kurz, 2002]
— model based (organized as an institution)
— there is a strong similarity between our beh equiv lI- and their infinitary proof system

Coalgebrale.g., J. Adamek 2005, B. Jacobs and J. Rutten 1997] — used to study the
states and their operations and their properties

— final coalgebras use to give (behavioral) semantics for processes

— when coalgebra specs are expressed as beh. specs, CC Proof System builds a
bisimulation

Observational proofs by rewriting [A. Bouhoula and M. Rusinowitch, 2002]
— based on critical contexts, which allow to prove or disprove conjectures

A coinductive calculus of streams [Jan Rutten, 2005]
— almost all properties proved with CIRC
— extended to infinite binary trees [joint work with Al. Silva]

G
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Future Work

Theoretical apsects:

— in some cases the freezing operator is too restrictive = extend the proof
system with new capabilities (special contexts, generalizations,
simplifications etc)

— productivity of the behavioral specs vs. well-definedness

— (full) behavioral specification of the non-deterministic processes
(behavioral TRS?)

— complexity of the related problems

CIRC Tool:

— automated case analysis

— more case studies (e.g., behavioral semantics of the functors)

— the use of CC as a framework (its use in other applications)

— its use in program verification and analysis M
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Thanks!
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