Circular Coinduction -A Proof Theoretical Foundation—

Grigore Roşu¹ Dorel Lucanu²

¹Department of Computer Science University of Illinois at Urbana-Champaign, USA grosu@illinois.edu

²Faculty of Computer Science Alexandru Ioan Cuza University, Iași, Romania dlucanu@info.uaic.ro

08/09/2009, CALCO 2009, Udine

- Introduction
 - CC History
 - Behavioral Equivalence, intuitively
 - Behavioral Specifications, intuitively
 - Circular Coinduction, intuitively
- Circular Coinduction Proof System
 - Formal Framework
 - Coinductive Circularity Principle
 - The Proof System
- Conclusion

Plan

- Introduction
 - CC History
 - Behavioral Equivalence, intuitively
 - Behavioral Specifications, intuitively
 - Circular Coinduction, intuitively
- Circular Coinduction Proof System
 - Formal Framework
 - Coinductive Circularity Principle
 - The Proof System
- 3 Conclusion

Circular Coinduction: History

- 1998 first implementation of CC in BOBJ system [J. Goguen & K. Lin & G. Roşu, ASE 2000]
- 2000 CC formalized as a inference rule enriching hidden logic [G. Roşu & J. Goguen, written in 1999]
- 2002 CC described as a more complex algorithm [J. Goguen & K. Lin & G. Roşu, WADT 2002]

 (a first version for special contexts, case analysis)
- 2005 CC implemented in CoCASL [D. Hausmann& T. Mossakowski & L. Schröder, FASE 2005]
- 2006 CC implemented in Maude (first version of CIRC) [D. Lucanu & A. Popescu & G. Roşu]
- 2007 first major refactoring of CIRC [CALCO Tools, 2007] (Maude meta-language application, regular strategies as proof tactics, simplification rules)
- 2009 CC formalized as a proof system [CALCO 2009, this paper second major refactoring of CIRC [CALCO Tools, 2009]

Behavioral Equivalence: Intuition 1/2

Behavioral equivalence is the non-distinguishability under experiments

Example of streams:

- a stream (of bits) S is an infinite sequence $b_1:b_2:b_3:\dots$ the head of $S: hd(S) = b_1$ the tail of $S: tl(S) = b_2:b_3:\dots$
- experiments:

```
hd(*:Stream), hd(tl(*:Stream)), hd(tl(tl(*:Stream))), \dots
```

- the basic elements upon on the expriments are built (here hd(*) and tl(*)) are called derivatives
- application of an experiment over a stream: C[S] = C[S/*]
- two streams S and S' are behavioral equivalent ($S \equiv S'$) iff C[S] = C[S'] for each exp. C
- for this particular case, beh. equiv. is the same with the equality of streams
- showing beh. equiv. is Π_2^0 -hard (S. Buss, G. Roşu, 2000, 2006)

Behavioral Equivalence: Intuition 2/2

(not in this paper)

Example of infinite binary trees (over bits):

- a infinite binary tree over D is a function $T: \{L, R\}^* \to D$ the root of $T: T(\varepsilon)$ the left subtree $T_\ell: T_\ell(w) = T(Lw)$ for all w the right subtree $T_r: T_r(w) = T(Rw)$ for all w
- knowing the root d, T_{ℓ} and T_r , then T can be written as d/T_{ℓ} , $T_r \setminus .$
- the derivatives: root(*: Tree), left(*: Tree), and right(*: Tree)
- the experiments: root(*:Tree), root(left(*:Tree)), root(right(*:Tree)) and so on
- two trees T and T' are beh. equiv. $(T \equiv T')$ iff C[T] = C[T'] for each exp. C

Behavioral Specifications: Intuition 1/2

Streams:

- derivatives: hd(*: Stream) and tl(*: Stream)
- beh specs are derivative-based specs

STREAM:

Corecursive spec	Behavioral spec
zeroes = 0 : zeroes	hd(zeroes) = 0
Zeroes	tl(zeroes) = zeroes
ones = 1 : ones	hd(ones) = 1
	tl(ones) = ones
blink = 0:1:blink	hd(blink) = 0
DIIIIK = 0 : 1 : DIIIIK	$tl(\mathit{blink}) = 1:\mathit{blink}$
zip(B:S,S')=B:zip(S',S)	hd(zip(S,S')) = hd(S)
	tl(S,S')=zip(S',S)

• for streams, this can be done with STR tool (see H. Zantema's tool paper)

7 / 21

Behavioral Specifications: Intuition 2/2

Infinite binary trees (TREE):

- derivatives: root(*:Tree), left(*:Tree), and right(*:Tree)
- beh specs are derivative-based specs

Corecursive spec	Behavioral spec
	$\mathit{root}(\mathit{ones}) = 1$
$\mathit{ones} = 1/\mathit{ones}, \mathit{ones} \setminus$	$\mathit{left}(\mathit{ones}) = \mathit{ones}$
	right(ones) = ones
$b/T_{\ell}, T_{r} \setminus + b'/T'_{\ell}, T'_{r} \setminus =$	$root(T + T') = root(T) \lor root(T)$
, , , , , , , , , , , , , , , , , , , ,	left(T+T')=left(T)+left(T')
$b \lor b' / T_{\ell} + T'_{\ell}, T_r + T'_r \setminus$	right(T+T') = right(T) + right(T')
	root(thue) = 0
$thue = 0/thue, thue + one \setminus$	$\mathit{left}(\mathit{thue}) = \mathit{thue}$
	right(thue) = thue + one

Circular Coinduction: Intuition 1/2

- the goal is to prove that $zip(zeroes, ones) \equiv blink$ holds in STREAM

Circular Coinduction: Intuition 2/2

– the goal is to prove that $ones + T \equiv ones$ holds in TREE

- a more challenging property: thue + one = not(thue)

Plan

- Introduction
 - CC History
 - Behavioral Equivalence, intuitively
 - Behavioral Specifications, intuitively
 - Circular Coinduction, intuitively
- Circular Coinduction Proof System
 - Formal Framework
 - Coinductive Circularity Principle
 - The Proof System
- 3 Conclusion

Formal Framework 1/2

A behavioral specification consists of:

- a many-sorted algebraic spec $\mathcal{B} = (S, \Sigma, E)$ ($S = \text{set of sorts}, \Sigma = \text{set of opns}, E = \text{set of eqns}$)
- a set of derivatives $\Delta = \{\delta[*:h]\}$ $\delta[*:h]$ is a context the sort h of the special variable * occurring in a derivative δ is called hidden: the other sorts are called visible
- each derivative can be seen as an equation transformer: if e is t=t' if cond, then $\delta[e]$ is $\delta[t]=\delta[t']$ if cond $\Delta[e]=\{\delta[e]\mid \delta\in\Delta\}$
- an entailment relation \vdash , which is reflexive, transitive, monotonic, and Δ -congruent ($E \vdash e$ implies $E \vdash \Delta[e]$)

Formal Framework 2x/2

Experiment:

each visible $\delta[*:h] \in \Delta$ is an experiment, and if C[*:h'] is an experiment and $\delta[*:h] \in \Delta$, then so is $C[\delta[*:h]]$

Behavioral satisfaction: $\mathcal{B} \Vdash e$ iff:

 $\mathcal{B} \vdash e$, if e is visible, and $\mathcal{B} \vdash C[e]$ for each experiment C, if e is hidden

Behavioral equivalence of B:
$$\equiv_{\mathcal{B}} \stackrel{\text{def}}{=} \{e \mid \mathcal{B} \Vdash e\}$$

A set of equations \mathcal{G} is behaviorally closed iff $\mathcal{B} \vdash \textit{visible}(\mathcal{G})$ and $\Delta(\mathcal{G} - \mathcal{B}^{\bullet}) \subseteq \mathcal{G}$, where $\mathcal{B}^{\bullet} = \{e \mid \mathcal{B} \vdash e\}$

Theorem

(coinduction) The behavioral equivalence \equiv is the largest behaviorally closed set of equations.

The Freezing Operator

- is the most important ingredient of CC
- it inhibits the use of the coinductive hypothesis underneath proper contexts;
- if e is t = t' if cond, then its frozen form is t = t' if cond $(-: s \rightarrow Frozen)$
- − ⊢ is extended for frozen equations s.t.
- (A1) $E \cup \mathcal{F} \vdash \boxed{e}$ iff $E \vdash e$, for each visible eqn e;
- (A2) $E \cup \mathcal{F} \vdash \mathcal{G}$ implies $E \cup \delta[\mathcal{F}] \vdash \delta[\mathcal{G}]$ for each $\delta \in \Delta$, equivalent to saying that for any Δ -context C, $E \cup \mathcal{F} \vdash \mathcal{G}$ implies $E \cup C[\mathcal{F}] \vdash C[\mathcal{G}]$

Theorem

(coinductive circularity principle) If \mathcal{B} is a behavioral specification and F is a set of hidden equations with $\mathcal{B} \cup \boxed{F} \vdash \boxed{\Delta[F]}$ then $\mathcal{B} \Vdash F$.

Circular Coinduction Proof System

Theorem

(soundness of circular coinduction) If \mathcal{B} is a behavioral specification and G is a set of equations such that $\mathcal{B} \Vdash \bigcirc G$ is derivable using the Circular Coinduction Proof System, then $\mathcal{B} \Vdash G$.

The proof is monolithic and, intuitively, the correctness can be explained in different ways:

- (1) since each derived path ends up in a cycle, it means that there is no way to show the two original terms behaviorally different by applications of derivatives;
- (2) the obtained circular graph structure can be used as a backbone to "consume" any possible experiment applied on the two original terms;
- (3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas inferred in order to prove the original task;
- (4) when it stabilizes, it "discovers" a relation which is compatible with the derivatives and is the identity on data, so the stabilized set of equations is included in the behavioral equivalence;
- (5) it incrementally completes a given equality into a bisimulation relation on terms

Theorem

(soundness of circular coinduction) If \mathcal{B} is a behavioral specification and G is a set of equations such that $\mathcal{B} \Vdash \bigcirc G$ is derivable using the Circular Coinduction Proof System, then $\mathcal{B} \Vdash G$.

The proof is monolithic and, intuitively, the correctness can be explained in different ways:

- (1) since each derived path ends up in a cycle, it means that there is no way to show the two original terms behaviorally different by applications of derivatives;
- (2) the obtained circular graph structure can be used as a backbone to "consume" any possible experiment applied on the two original terms;
- (3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas inferred in order to prove the original task;
- (4) when it stabilizes, it "discovers" a relation which is compatible with the derivatives and is the identity on data, so the stabilized set of equations is included in the behavioral equivalence;
- (5) it incrementally completes a given equality into a bisimulation relation on terms

16 / 21

Theorem

(soundness of circular coinduction) If \mathcal{B} is a behavioral specification and G is a set of equations such that $\mathcal{B} \Vdash^{\circlearrowleft} \mid G \mid$ is derivable using the Circular Coinduction Proof System, then $\mathcal{B} \Vdash G$.

The proof is monolithic and, intuitively, the correctness can be explained in different ways:

- (1) since each derived path ends up in a cycle, it means that there is no way to show the two original terms behaviorally different by applications of derivatives;
- (2) the obtained circular graph structure can be used as a backbone to "consume" any possible experiment applied on the two original terms;
- (3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas inferred in order to prove the original task;
- (4) when it stabilizes, it "discovers" a relation which is compatible with the derivatives and is the identity on data, so the stabilized set of equations is included in the behavioral equivalence;
- (5) it incrementally completes a given equality into a bisimulation relation on terms

Theorem

(soundness of circular coinduction) If \mathcal{B} is a behavioral specification and G is a set of equations such that $\mathcal{B} \Vdash^{\circlearrowleft} G$ is derivable using the Circular Coinduction Proof System, then $\mathcal{B} \Vdash G$.

The proof is monolithic and, intuitively, the correctness can be explained in different ways:

- (1) since each derived path ends up in a cycle, it means that there is no way to show the two original terms behaviorally different by applications of derivatives;
- (2) the obtained circular graph structure can be used as a backbone to "consume" any possible experiment applied on the two original terms;
- (3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas inferred in order to prove the original task;
- (4) when it stabilizes, it "discovers" a relation which is compatible with the derivatives and is the identity on data, so the stabilized set of equations is included in the behavioral equivalence;
- (5) it incrementally completes a given equality into a bisimulation relation on terms

Theorem

(soundness of circular coinduction) If \mathcal{B} is a behavioral specification and G is a set of equations such that $\mathcal{B} \Vdash \bigcirc G$ is derivable using the Circular Coinduction Proof System, then $\mathcal{B} \Vdash G$.

The proof is monolithic and, intuitively, the correctness can be explained in different ways:

- (1) since each derived path ends up in a cycle, it means that there is no way to show the two original terms behaviorally different by applications of derivatives;
- (2) the obtained circular graph structure can be used as a backbone to "consume" any possible experiment applied on the two original terms;
- (3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas inferred in order to prove the original task;
- (4) when it stabilizes, it "discovers" a relation which is compatible with the derivatives and is the identity on data, so the stabilized set of equations is included in the behavioral equivalence;
- (5) it incrementally completes a given equality into a bisimulation relation on terms

16 / 21

Theorem

(soundness of circular coinduction) If \mathcal{B} is a behavioral specification and G is a set of equations such that $\mathcal{B} \Vdash \bigcirc G$ is derivable using the Circular Coinduction Proof System, then $\mathcal{B} \Vdash G$.

The proof is monolithic and, intuitively, the correctness can be explained in different ways:

- (1) since each derived path ends up in a cycle, it means that there is no way to show the two original terms behaviorally different by applications of derivatives;
- (2) the obtained circular graph structure can be used as a backbone to "consume" any possible experiment applied on the two original terms;
- (3) the equalities that appear as nodes in the obtained graph can be regarded as lemmas inferred in order to prove the original task;
- (4) when it stabilizes, it "discovers" a relation which is compatible with the derivatives and is the identity on data, so the stabilized set of equations is included in the behavioral equivalence;
- (5) it incrementally completes a given equality into a bisimulation relation on terms

Example

$$\begin{split} & \text{STREAM} \cup \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \text{STREAM} \cup \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{hd}(\text{zip}(\text{odd}(S), \text{even}(S))) \\ \end{array} \right\} & \vdash \text{hd}(\text{zip}(\text{odd}(S), \text{even}(S))) \\ \text{STREAM} \cup \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{bd}(\text{zip}(\text{odd}(S), \text{even}(S))) \\ \end{array} \right\} & \vdash \text{tl}(\text{zip}(\text{odd}(S), \text{even}(S))) \\ \text{STREAM} \cup \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \end{array} \\ \text{STREAM} \cup \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \end{array} \\ \text{STREAM} \cup \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \end{array} \\ \text{STREAM} \cup \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \end{array} \\ \text{STREAM} \\ \parallel \vdash \bigcirc \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \end{array} \\ \text{STREAM} \\ \parallel \vdash \bigcirc \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \end{array} \\ \text{STREAM} \\ \parallel \vdash \bigcirc \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \end{array} \\ \text{STREAM} \\ \parallel \vdash \bigcirc \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \end{array} \\ \text{STREAM} \\ \parallel \vdash \bigcirc \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \end{array} \\ \text{STREAM} \\ \parallel \vdash \bigcirc \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \end{array} \\ \text{STREAM} \\ \parallel \vdash \bigcirc \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \text{STREAM} \\ \parallel \vdash \bigcirc \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S)) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \end{array} \\ \text{STREAM} \\ \parallel \vdash \bigcirc \left\{ \begin{array}{c} \text{zip}(\text{odd}(S), \text{even}(S) \\ \end{array} \right\} & \vdash \text{span}(S) \\ \text{span}(S$$

Plan

- Introduction
 - CC History
 - Behavioral Equivalence, intuitively
 - Behavioral Specifications, intuitively
 - Circular Coinduction, intuitively
- Circular Coinduction Proof System
 - Formal Framework
 - Coinductive Circularity Principle
 - The Proof System
- Conclusion

Related Approaches

Context induction [R. Hennicker, 1990]

- exploits the inductive definition of the experiments [used also here in CCP]
- requires human guidance, generalization of the induction assertions

Observational Logic [M. Bidoit , R. Hennicker , and Al. Kurz, 2002]

- model based (organized as an institution)
- there is a strong similarity between our beh equiv \Vdash and their infinitary proof system

Coalgebra[e.g., J. Adamek 2005, B. Jacobs and J. Rutten 1997] – used to study the states and their operations and their properties

- final coalgebras use to give (behavioral) semantics for processes
- when coalgebra specs are expressed as beh. specs, CC Proof System builds a bisimulation

Observational proofs by rewriting [A. Bouhoula and M. Rusinowitch, 2002]

- based on *critical contexts*, which allow to prove or disprove conjectures
- A coinductive calculus of streams [Jan Rutten, 2005]
- almost all properties proved with CIRC
- extended to infinite binary trees [joint work with Al. Silva]

Future Work

Theoretical apsects:

- in some cases the freezing operator is too restrictive \Rightarrow extend the proof system with new capabilities (special contexts, generalizations, simplifications etc)
- productivity of the behavioral specs vs. well-definedness
- (full) behavioral specification of the non-deterministic processes (behavioral TRS?)
- complexity of the related problems

CIRC Tool:

- automated case analysis
- more case studies (e.g., behavioral semantics of the functors)
- the use of CC as a framework (its use in other applications)
- its use in program verification and analysis

Thanks!

