
Fernando Orejas, UPC (Barcelona)

Esther Guerra, U. Carlos III (Madrid)

Juan de Lara, U. Autónoma (Madrid)

Hartmut Ehrig, TU Berlin

 A model transformation is the translation of a

description (specification) of a software system (or

artifact) with the aim of:

•! Refining that description towards implementation

•! Analysing the specification

•! Abstracting some details

•! Improving the performance of the system

•! ...

What is a model transformation

 There are many kinds of model transformations:

•! Endogenous or exogenous

•! Monodirectional or Bidirectional or Synchronized

•! One-to-one or many-to-many

•! To obtain "semantically equivalent" models

•! From more abstract to more concrete models

•! From more concrete to more abstract models

Model Transformations

Model transformations may be defined:

•! Operationally

•! Declaratively

The OMG has defined the language QVT to describe

model transformations including an operational and a

declarative sublanguage

Description of model transformations

To develop methods to implement declarative

specifications of model transformations.

Aim of this work

" ! A visual declarative framework to describe bidirectional
model to model transformations.

" ! Inspired in the relational fragment of QVT

" ! Two kinds of patterns:

–! Positive and Negative patterns

M2M pattern specification

We may formalize model transformations by a span of

triple graphs, called a triple graph:

What is a Model Transformation

MC!
MS! MT!

hS! hT!

" ! A triple graph [Schurr 1994] models the relation
between two graphs:

Triple graphs

a b

c c

a b

c

a a
a

Specifing a model transformation means describing:

•! How the given source and target types are related.

•! What are the possible transformations of each

model or instance.

Specifying Model Transformations

Example – the triple type graph

class

attrib. column

table

Triple patterns are constraints on triple models.

" ! Positive patterns describe possible relationships

between source and target elements (under a given

negative premise)

 N(Q ! Cj)j"J # Q

" ! Negative patterns describe forbidden relationships.

 N(Q)

Triple Patterns

Example

:C

:A :Co

:T

Example

:C

:C

:T

Example

:C :T

:C

:C :T

N(No Parent)

Example

:T

:C :T

N(NoDup)

A positive pattern N(Q ! Cj)j"J # Q is forward satisfied by

a triple graph G if whenever QS can be matched to GS via

an injective h, and h satisfies the preconditions then h can
be extended to an injective morphism h’: Q ! G.

Satisfaction

Q|S Q

G|S G

Cj|S

// h’ h

A negative pattern N(Q) is forward satisfied by a triple

graph G if there is no injective morphism h: Q ! G.

A model transformation specification SP consists of a

triple type graph set of positive patterns and negative

patterns over this type graph.

The transformation specified by SP is defined by the

class of triple typed graphs satisfying SP that can be

considered to be generated by the patterns in SP.

Specification of Model Transformations

" ! A (non-deleting) transformation rule is a graph

monomorphism L ! R.

" ! The application of a rule to a graph G is given by a

pushout:

Non-deleting GraphTransformation

L R

G G'

po

" ! A (left) Negative Application Condition (NAC) for a

transformation rule is an embedding L ! N.

" ! The application of a rule with a NAC to G is given by a

pushout, if there is no h making the triangle diagram

commute

Negative application conditions

L R

G G'

N

h po //

Example

Example

Example

Example

Example

Given P = $N(Q ! Cj)j"J # Q%, the set of transformation

rules associated to P, TR(P), consists of all the rules r =

$NAC(r), L ! Q%, such that:

" ! Q|S & L ' Q

" ! NAC(r) consists of all the NACs:

Compiling positive patterns into rules

Q|S Cj|S

L C’j

po

Examples

:C

:A :Co

:T

Examples

:C

:A :Co

:T :C

:A

:C

:A :Co

:T :C

:A

:T

Examples

:C

:A :Co

:T :C

:A

:T

Examples

:C

:A :Co

:T :C

:A :Co

Given P = $N(Q ! Cj)j"J # Q%, the set of terminating

transformation rules associated to P, TTR(P), consists of all

the rules r = $NAC(r) (TNAC(r), L ! Q%, such that:

" ! $NAC(r), L ! Q% " TR(P)

" ! TNAC(r) consists of all the NACs

Compiling positive patterns into terminating rules

Q|S Q

L T

j.s.

Examples

:C

:A :Co

:T

Examples

:C

:A :Co

:T :C

:A

:C

:A :Co

:T

TNAC

Examples

:C

:A :Co

:T :C

:A

:T

:C

:A :Co

:T

TNAC1

:C

:A :Co

:T

TNAC2

:T

Examples

:C

:A :Co

:T :C

:A :Co

:C

:A :Co

:T

TNAC

:C

:A :Co

:Co

TNAC2

:T

Examples

:C

:C

:T

Examples

:C

:C

:T :C

:C

:C

:C

:T

TNAC

Examples

:C

:C

:T :C

:C

:T

:C

:C

:T

TNAC

:C

:C :T

:T

TNAC2

Examples

:C :T

:C

:C :T

N(No Parent)

Examples

:C :T

:C

:C

NAC1

:C

:C :T

TNAC

Examples

:C :T

:C

:C

NAC1

:C :T

TNAC1

:C :T

:T :C :T

TNAC2

:T

" !TTR(SP) is terminating.

Termination

Termination

Q|S

L

G G'

Q

L

A rule cannot be applied twice with the same source match:

G is a normal form for TTR(SP) if and only if G (forward)

satisfies all the positive patterns in SP.

Soundness

G is SP-generated if there are positive patterns P1, …, Pn in

SP, with Pi = N(Qi ! Cij)j"J # Qi, and monomorphisms h1,

…, hn, such that each hi satisfies the preconditions N(Qi !
Cij)j"J, and:

SP-generated triple graphs

G|S Q1

G

Qn
…

h1 hn

are jointly surjective

" ! G is SP-generated if and only if we can transform G|S into

G using rules from TR(SP).

Completeness 1

G is strictly SP-generated if:

" ! G is SP-generated

" ! For every pattern P= N(Pj) j"J # P in SP, and all

monomorphisms f1,f2 : Q ! C, if (f1)S=(f2)S such that they

both satisfy the preconditions in P, then f1=f2.

Strictly SP-generated triple graphs

" ! If G is strictly SP-generated then G forward satisfies SP+

if and only if we can transform G|S into G using rules from

TTR(SP) and G is a normal form for TTR(SP).

Completeness 2

Examples

:C

:A :Co

:C

:T

:T

:C

:A :Co

:C :T

:C

:A

:C :T

:C

:A

:C

:C

:A

:C :T

Using standard techniques, negative patterns can be

converted into NACs of the rules associated to the given

specification.

Negative patterns

We have seen:

•! A formal framework to deal with model

transformations

•! A general method to specify transformations

•! A sound and complete method to compile these

specifications

Conclusion and future work

Some further work:

•! Synchronized transformations

•! Verification of transformations

Conclusion and future work

1.! Models and Model transformation

2.! Specification of model transformations by triple

patterns

3.! Compiling patterns into transformation rules

•! Introduction to graph transformation

•! Translation of patterns into rules

•! Termination

•! Soundness

•! Completeness

4.! Conclusion

Outline of the talk

