

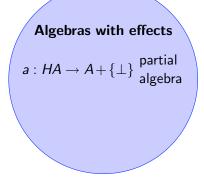
Complete Iterativity for Algebras with Effects

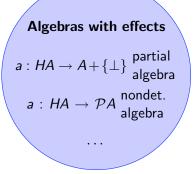
Stefan Milius, Thorsten Palm and Daniel Schwencke

7th September 2009

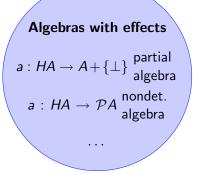
Algebras with effects

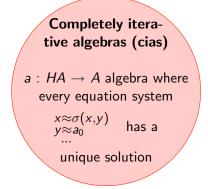
 $a : HA \rightarrow A$ algebra



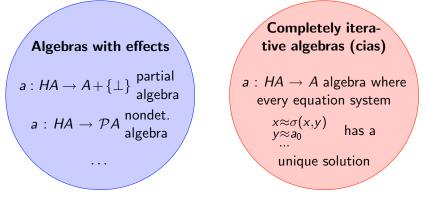


◆□> <□> <=> <=> <=> <=> <=> <=> <=>





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで



Questions

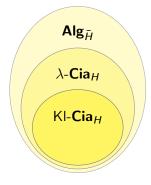
- What are the right notions of equation systems and solutions?
- How can cias with certain effects be characterised?

 Lift analytic functors H canonically to Set_M

- Lift analytic functors H canonically to Set_M
- Notions of cias with effects

- Kleisli-cias
- λ -cias

- Lift analytic functors H canonically to Set_M
- Notions of cias with effects
 - Kleisli-cias
 - λ -cias



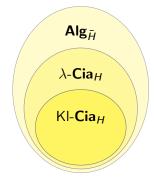
- Lift analytic functors H canonically to Set_M
- Notions of cias with effects
 - Kleisli-cias
 - λ -cias
- Free Kleisli-/λ-cias from free H-algebras

$\mathbf{Alg}_{\bar{H}}$	
λ -Cia _H	
KI- Cia _H	

- Lift analytic functors H canonically to Set_M
- Notions of cias with effects
 - Kleisli-cias
 - λ -cias
- Free Kleisli-/λ-cias from free H-algebras
- Characterisation theorems

Alg _H	
ліб Н	
λ -Cia _H	
KI- Cia _H	

- Lift analytic functors H canonically to Set_M
- Notions of cias with effects
 - Kleisli-cias
 - λ-cias
- Free Kleisli-/λ-cias from free H-algebras
- Characterisation theorems



(日)

Based on I. Hasuo, B. Jacobs, A. Sokolova 2007

Outline

Algebras with Effects

Monads Kleisli Category Canonical Liftings

Cias

Without Effects Adding Effects

Results on Cias with Effects Free λ -Cias Characterisations of λ -Cias

Conclusion

Outline

Algebras with Effects

Monads Kleisli Category Canonical Liftings

Cias Without Effect Adding Effects

Results on Cias with Effects Free λ -Cias Characterisations of λ -Cias

Conclusion

Effects as Monads

- Well-known technique: E. Moggi (late 1980s)
- ▶ Observation: A + {⊥}, PA, ... are of the form MA for some set monad (M, η, μ)

Effects as Monads

- Well-known technique: E. Moggi (late 1980s)
- Observation: A + {⊥}, PA, ... are of the form MA for some set monad (M, η, μ)

Monad constituent	Meaning
М	type of effect
$\eta: \mathrm{Id} \to M$	computations without effects
$\mu: \textit{MM} ightarrow \textit{M}$	composition of effects
axioms	the "properties one wants"

Effect	Monad
partiality	maybe monad $\mathit{MA} = \mathit{A} + \{\bot\}$
nondeterminism	powerset monad $\mathit{MA} = \mathcal{PA}$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Effect	Monad
partiality	maybe monad $M\!A = A + \{ot\}$
nondeterminism	powerset monad $MA = \mathcal{P}A$
<i>E</i> -composite	environment monad $MA = A^E$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Effect	Monad
partiality	maybe monad $MA = A + \{\bot\}$
nondeterminism	powerset monad $MA = \mathcal{P}A$
E-composite	environment monad $MA = A^E$
probabilistic nondeterminism	subdistribution monad $MA = \{d: A \rightarrow [0,1] \mid \sum_{a \in A} d(a) \leq 1\}$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Effect	Monad
partiality	maybe monad $MA = A + \{\bot\}$
nondeterminism	powerset monad $MA = \mathcal{P}A$
E-composite	environment monad $MA = A^E$
probabilistic nondeterminism	subdistribution monad $MA = \{d: A \rightarrow [0,1] \mid \sum_{a \in A} d(a) \leq 1\}$
and many more	

Kleisli Category

Definition Kleisli category \mathbf{Set}_M of M:

- objects: all sets
- morphisms from A to B: all maps $f : A \rightarrow MB$

Remark Inclusion functor $J : \mathbf{Set} \to \mathbf{Set}_M$ with JA = A and $Jf = \eta \cdot f$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへ⊙

Liftings to **Set**_M

Definition \overline{H} is a lifting of H to \mathbf{Set}_M if $\overline{H}J = JH$.

Definition Distributive law of H over M: natural transformation $\lambda : HM \rightarrow MH + \text{two axioms}$

Proposition (P. S. Mulry 1994) Liftings of H to $\mathbf{Set}_M \iff distributive \ laws \ HM \rightarrow MH$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Canonical Liftings

Definition Analytic functor: coproduct of functors $(-)^n/G$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Examples

- 1. Polynomial functors
- 2. Unordered pairs functor
- 3. Bag functor

Canonical Liftings

Definition Analytic functor: coproduct of functors $(-)^n/G$

Examples

- 1. Polynomial functors
- 2. Unordered pairs functor
- 3. Bag functor

Theorem

Any analytic functor has a canonical lifting to the Kleisli category of a commutative monad.

 This extends a previous result of I. Hasuo, B. Jacobs and A. Sokolova.

Commutative Monads

Examples

- Maybe monad $MA = A + \{\bot\}$
- Powerset monad $MA = \mathcal{P}A$
- Environment monad $MA = A^E$
- ► Subdistribution monad $MA = \{d : A \rightarrow [0, 1] \mid \sum_{a \in A} d(a) \le 1\}$

(日)

Non-example

• List monad $MA = \coprod_{n \in \mathbb{N}} A^n$

Canonical Distributive Laws

Examples

Polynomial functor H_{Σ} and

maybe monad: λ_A : H_Σ(A + {⊥}) → H_ΣA + {⊥} identity on H_ΣA, otherwise constant to ⊥

(日)

▶ powerset monad: λ_A : H_ΣPA → PH_ΣA cartesian product

Outline

Algebras with Effects

Monads Kleisli Category Canonical Liftings

Cias

Without Effects Adding Effects

Results on Cias with Effects Free λ -Cias Characterisations of λ -Cias

Conclusion

Definitions (S. Milius 2005)

H functor on a category \mathcal{A} with finite coproducts.

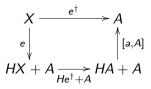
▶ flat equation morphism (in A): $e: X \to HX + A$

(日)

Definitions (S. Milius 2005)

H functor on a category \mathcal{A} with finite coproducts.

- flat equation morphism (in A): $e: X \to HX + A$
- ▶ solution (of *e* in *a* : $HA \rightarrow A$): $e^{\dagger} : X \rightarrow A$ such that



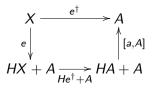
▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

commutes

Definitions (S. Milius 2005)

H functor on a category \mathcal{A} with finite coproducts.

- flat equation morphism (in A): $e: X \to HX + A$
- ▶ solution (of *e* in *a* : $HA \rightarrow A$): $e^{\dagger} : X \rightarrow A$ such that



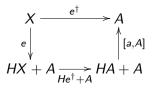
commutes

completely iterative algebra (cia): a : HA → A such that for every e : X → HX + A there exists a unique solution

Definitions (S. Milius 2005)

H functor on a category \mathcal{A} with finite coproducts.

- flat equation morphism (in A): $e: X \to HX + A$
- ▶ solution (of *e* in *a* : $HA \rightarrow A$): $e^{\dagger} : X \rightarrow A$ such that



commutes

completely iterative algebra (cia): a : HA → A such that for every e : X → HX + A there exists a unique solution

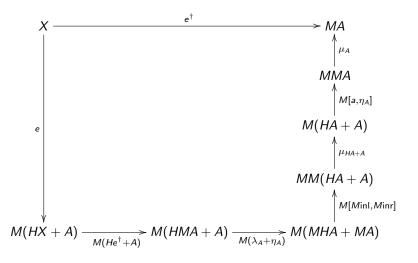
・ロト・西ト・モン・田田 のくの

Example

au: T
ightarrow HT final H-coalgebra $\iff au^{-1}$ initial cia

Definition Kleisli-cia: cia for a lifting \overline{H}

Definition Kleisli-cia: cia for a lifting \overline{H}



Definition Kleisli-cia: cia for a lifting \overline{H}

Definitions *H* set functor with lifting \overline{H} to **Set**_{*M*}

• *M*-equation morphism (in *A*): $e: X \rightarrow HX + MA$

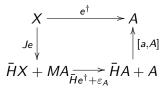
▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Definition Kleisli-cia: cia for a lifting \overline{H}

Definitions

H set functor with lifting \overline{H} to \mathbf{Set}_M

- *M*-equation morphism (in *A*): $e: X \rightarrow HX + MA$
- ▶ solution (of e in a : $HA \rightarrow MA$): $e^{\dagger} : X \rightarrow MA$ such that



(日)

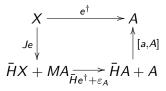
commutes in \mathbf{Set}_M

Definition Kleisli-cia: cia for a lifting \overline{H}

Definitions

H set functor with lifting \overline{H} to \mathbf{Set}_M

- *M*-equation morphism (in *A*): $e: X \rightarrow HX + MA$
- ▶ solution (of e in a : $HA \rightarrow MA$): $e^{\dagger} : X \rightarrow MA$ such that



commutes in \mathbf{Set}_M

completely λ-iterative algebra (λ-cia): a : HA → MA such that for every e : X → HX + MA there exists a unique solution

Example

• $M = \mathcal{P}$, \overline{H}_{Σ} canonical lifting of H_{Σ} to \mathbf{Set}_M

• $F_{\Sigma}Y$ finite Σ -trees on Y

Example

- $M = \mathcal{P}, \ \overline{H}_{\Sigma}$ canonical lifting of H_{Σ} to \mathbf{Set}_M
- $F_{\Sigma}Y$ finite Σ -trees on Y
- $\blacktriangleright \ H_{\Sigma}F_{\Sigma}Y \to F_{\Sigma}Y \xrightarrow{\eta_{F_{\Sigma}Y}} \mathcal{P}F_{\Sigma}Y \text{ is a } \lambda\text{-cia}$
- \blacktriangleright Variables are solved uniquely to finite tree unfoldings or \emptyset

Example

- $M = \mathcal{P}$, \overline{H}_{Σ} canonical lifting of H_{Σ} to \mathbf{Set}_M
- $F_{\Sigma}Y$ finite Σ -trees on Y

$$\blacktriangleright H_{\Sigma}F_{\Sigma}Y \to F_{\Sigma}Y \xrightarrow{\eta_{F_{\Sigma}}Y} \mathcal{P}F_{\Sigma}Y \text{ is a } \lambda\text{-cia}$$

 \blacktriangleright Variables are solved uniquely to finite tree unfoldings or \emptyset

► $\Sigma = \{*\}$

$$x_1 pprox x_2 * x_3$$
 $x_2 pprox \left\{ \begin{smallmatrix} * \\ / & \backslash \\ y_1 \end{smallmatrix} , \begin{smallmatrix} * \\ y_2 \end{smallmatrix}
ight\}$ $x_3 pprox \left\{ \begin{smallmatrix} * \\ / & \backslash \\ y_3 \end{smallmatrix}
ight\}$

Example

- $M = \mathcal{P}$, \overline{H}_{Σ} canonical lifting of H_{Σ} to \mathbf{Set}_M
- $F_{\Sigma}Y$ finite Σ -trees on Y

$$\blacktriangleright H_{\Sigma}F_{\Sigma}Y \to F_{\Sigma}Y \xrightarrow{\eta_{F_{\Sigma}}Y} \mathcal{P}F_{\Sigma}Y \text{ is a } \lambda\text{-cia}$$

 \blacktriangleright Variables are solved uniquely to finite tree unfoldings or \emptyset

 $\blacktriangleright \ \Sigma = \{*\}$

$$e^{\dagger}(x_1) = \{ egin{array}{ccccc} * & * & * & \ / & & / & & / & \ / & & & / & & \ / & & & / & & \ y_1 & y_2 & y_3 & y_4 & & y_3 & y_4 \ \end{array} \}$$

Kleisli-Cias and λ -Cias

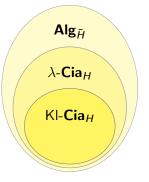
	Algebra a	Equations e	Solutions e^{\dagger}
cias in Set	$HA \rightarrow A$	$X \rightarrow HX + A$	$X \to A$
Kleisli-cias	$HA \rightarrow MA$	$egin{array}{lll} X ightarrow HX + A \ X ightarrow M(HX + A) \end{array}$	$X \to MA$
λ -cias	$HA \rightarrow MA$	$X \rightarrow HX + MA$	$X \to MA$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ Ξ → ○ Q @

Kleisli-Cias and λ -Cias

		Equations e	Solutions e^{\dagger}
cias in Set	$HA \rightarrow A$	$X \rightarrow HX + A$	$X \to A$
Kleisli-cias	$HA \rightarrow MA$	$X \rightarrow M(HX + A)$	$X \to MA$
λ -cias	$HA \rightarrow MA$	$X \rightarrow HX + A$ $X \rightarrow M(HX + A)$ $X \rightarrow HX + MA$	$X \to MA$

Proposition Every Kleisli-cia is a λ -cia.



Outline

Algebras with Effects

Monads Kleisli Category Canonical Liftings

Cias Without Effects Adding Effects

Results on Cias with Effects Free λ -Cias Characterisations of λ -Cias

Conclusion

Free λ -Cias

Assumptions

- *H* set functor with lifting \overline{H} to \mathbf{Set}_M
- ▶ **Set**_M cpo-enriched with left-strict composition
- \bar{H} locally monotone

Theorem

The free H-algebra ϕ_Y on Y yields the free \overline{H} -algebra, Kleisli-cia and λ -cia $J\phi_Y$ on Y.

Free λ -Cias

Assumptions

- *H* set functor with lifting \overline{H} to \mathbf{Set}_M
- ▶ **Set**_M cpo-enriched with left-strict composition
- \bar{H} locally monotone

Theorem

The free H-algebra ϕ_Y on Y yields the free \overline{H} -algebra, Kleisli-cia and λ -cia $J\phi_Y$ on Y.

Example

Canonical lifting of H_{Σ} to \mathbf{Set}_M for maybe, powerset, subdistribution monad: the free λ -/Kleisli-cia on Y is carried by all finite Σ -trees on Y.

Free λ -Cias (ctd.)

Theorem

The free H-algebra ϕ_Y on Y yields the free \overline{H} -algebra, Kleisli-cia and λ -cia $J\phi_Y$ on Y.

- Theorem is based on results of I. Hasuo, B. Jacobs and A. Sokolova.
- It does not apply to the environment monad, but:

Proposition

Canonical lifting of H to \mathbf{Set}_M for environment monad: the final H + Y-coalgebra $\tau_Y : TY \to HTY + Y$ yields the free λ -/Kleisli-cia $J(\tau_Y^{-1} \cdot \operatorname{inl})$ on Y.

Characterisations of λ -Cias

Theorem

For the maybe monad and the canonical lifting of a polynomial functor H_{Σ} the following are equivalent for $a : H_{\Sigma}A \to MA$:

- 1. a is a λ -cia.
- 2. a is a Kleisli-cia.
- 3. a is an $\bar{H}_{\Sigma}\text{-algebra}$ "increasing" for some well-founded order.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Characterisations of λ -Cias

Theorem

For the maybe monad and the canonical lifting of a polynomial functor H_{Σ} the following are equivalent for a : $H_{\Sigma}A \rightarrow MA$:

- 1. a is a λ -cia.
- 2. a is a Kleisli-cia.
- 3. a is an $\bar{H}_{\Sigma}\text{-algebra}$ "increasing" for some well-founded order.

A similar theorem holds for the powerset monad.

Example (for $H_{\Sigma} = (-)^2$, $M = \mathcal{P}$) ($\mathbb{N} \setminus \{0, 1\}, *$) with $n * m = \{n \cdot m\}$ is a λ -/Kleisli-cia.

$y \approx \{2,3\}$		$x \approx x * y$ $y \approx \{8\}$	∅ {8}
$z \approx \{4,5\}$	{4,5}	$x \approx \{2, x * x\}$	$\{2^n\mid n\geq 1\}$

Characterisations of λ -Cias (ctd.)

Theorem

For the environment monad and the canonical lifting the following are equivalent for a : $HA \rightarrow MA$:

- 1. a is a λ -cia.
- 2. a is a Kleisli-cia.
- 3. a is an \overline{H} -algebra such that $\pi_i \cdot a$ is a cia in **Set** for all $i \in E$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

The reason: the solution diagrams for λ-/Kleisli-cias decompose to solution diagrams in Set.

Outline

Algebras with Effects

Monads Kleisli Category Canonical Liftings

Cias

Without Effects Adding Effects

Results on Cias with Effects Free λ -Cias Characterisations of λ -Cias

Conclusion

Conclusion

Summary

- Canonical liftings for analytic functors/commutative monads
- Notions of cias with effects
 - Kleisli-cias
 - λ-cias
- Results on cias with effects
 - Free Kleisli- $/\lambda$ -cias for cpo-enriched **Set**_M
 - \blacktriangleright Characterisation of Kleisli-/ $\lambda\text{-}cias$ for maybe, powerset and environment monad

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Conclusion

Summary

- Canonical liftings for analytic functors/commutative monads
- Notions of cias with effects
 - Kleisli-cias
 - λ-cias
- Results on cias with effects
 - Free Kleisli- $/\lambda$ -cias for cpo-enriched **Set**_M
 - Characterisation of Kleisli-/λ-cias for maybe, powerset and environment monad

Open Questions

- When do we have λ-cias = Kleisli-cias? Has this to do with commutative monads or is there a counterexample?
- Characterisation Theorems for analytic functors?
- Capture effects by Lawvere theories?

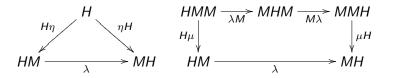
... for your attention!

schwencke@iti.cs.tu-bs.de

Liftings are Distributive Laws

Definition \overline{H} is a lifting of H to \mathbf{Set}_M if $\overline{H}J = JH$.

Definition Distributive law of H over M: natural transformation $\lambda : HM \rightarrow MH$ such that



commute.

 \rightarrow back

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇◇◇

Proposition (P. S. Mulry 1994)

Liftings of H to $\mathbf{Set}_M \iff \mathsf{distributive} \mathsf{ laws} \mathsf{HM} \to \mathsf{MH}.$

Existence of Further Liftings

In general, there exist other than the canonical liftings of H to \mathbf{Set}_{M} .

Examples

 $H = \mathrm{Id}$, monad endomorphisms $\lambda : M \to M \iff$ distributive laws

- 1. Environment monad $M = (-)^E$ with |E| = 2: $\lambda = id : (-)^2 \rightarrow (-)^2$ is canonical, but also $\lambda' = c : (-)^2 \rightarrow (-)^2$ (the symmetry isomorphism) is a monad endomorphism.
- Output monad M = (-) × O for some monoid O: any monoid endomorphism h : O → O extends to a monad morphism λ = id × h : (-) × O → (-) × O. For the monoid (N, +, 0) there are infinitely many monoid endomorphisms: consider multiplication with any fixed natural number.

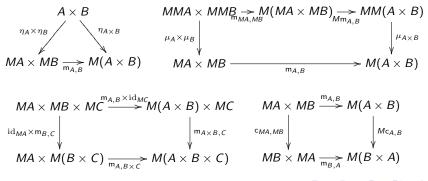
 \rightarrow back

Commutative Monads

Commutative monads \iff symmetric monoidal monads (A. Kock 1970/72) \rightarrow back

Definition

Symmetric monoidal monad (on Set): (M, η, μ) together with $m_{A,B}: MA \times MB \rightarrow M(A \times B)$ natural in A and B such that the following diagrams commute:



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

λ -Cias

Definitions

H set functor with lifting \overline{H} to \mathbf{Set}_M

- *M*-equation morphism (in *A*): $e: X \rightarrow HX + MA$
- Solution (of e in a : HA → MA): e[†] : X → MA such that the right-hand diagram commutes in Set

$$X \xrightarrow{e^{\uparrow}} MA$$

$$\downarrow \qquad \qquad \uparrow [\mu_A, MA]$$

$$MMA + MA$$

$$\downarrow \qquad \qquad \uparrow MHA + MA$$

$$MHA + MA$$

$$\uparrow \lambda + MA$$

$$\downarrow \qquad \qquad \uparrow \lambda + MA$$

completely λ-iterative algebra (λ-cia): a : HA → MA such that for every e : X → HX + MA there exists a unique solution

Solution Preserving Morphisms

Definition

For any flat equation morphism $e: X \to HX + A$ in A and any morphism $f: A \to B$ define $f \bullet e = (HX + f) \cdot e$. A morphism fbetween cias A and B is called solution preserving if $(f \bullet e)^{\dagger} = f \cdot e^{\dagger}$ for every flat equation morphism e.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Proposition

For a morphism $f : A \rightarrow B$ between cias the following are equivalent:

- 1. f is an H-algebra homomorphism.
- 2. f preserves solutions.

Solution Preserving Morphisms (ctd.)

Definition

For any *M*-equation morphism $e: X \to HX + MA$ in *A* and any morphism $f: A \to MB$ define $f \bullet e = (HX + \mu_B \cdot Mf) \cdot e$. A morphism *f* between λ -cias *A* and *B* is called solution preserving if $(f \bullet e)^{\dagger} = \mu_B \cdot Mf \cdot e^{\dagger}$ for every flat equation morphism *e*.

Proposition

For a morphism $f : A \rightarrow MB$ between λ -cias the following are equivalent:

- 1. f is an \overline{H} -algebra homomorphism.
- 2. f preserves solutions.

Proper Subcategories

There exist λ -cias that are no Kleisli-cias.

Example

 $H = \mathrm{Id}$, M list monad, $\lambda = \mathrm{id}$. Then

 $\textit{a}: \{0,1\} \rightarrow \textit{M}\{0,1\} \quad \text{ with } \textit{a}(0) = [1] \text{ and } \textit{a}(1) = [1,1]$

is a (unary) λ -cia: $\mu_{\{0,1\}} \cdot Ma$ has the unique fixed point [] and is increasing for the (well-founded) length/lexicographic order. But it is no Kleisli-cia since $x \approx [x, 1]$ has no solution in finite lists.

There exist \overline{H} -algebras that are no λ -cias.

Example

H = Id, M powerset monad, $\lambda = \text{id}$. The (unary) λ -cias are precisely the well-founded graphs; but clearly there also exist non-well-founded graphs.

→DdCr シック 単同 《日》《母》《日》《中 ◆

Cpo-Enriched Kleisli Categories

Definitions

- A is called cpo-enriched if each hom-set carries a cpo such that composition preserves joins of ω-chains.
- ► Composition of morphisms in A is called left-strict if for each morphism f the map · f preserves the least element.
- An endofunctor H on A is called locally monotone if each derived function A(A, B) → A(HA, HB) is monotone.

Examples

- 1. Maybe monad $M = (-) + \{\bot\}$: *MB* carries flat cpo
- 2. Powerset monad $M = \mathcal{P}$: *MB* carries the inclusion cpo
- 3. Subdistribution monad $M = \mathbb{D}$: *MB* carries the pointwise cpo

In all examples, the cpos on MB pointwise induce cpos on each hom-set **Set**(A, MB). Furthermore, composition of morphisms is left-strict and each canonical lifting is locally monotone. \rightarrow back

Unary λ -Cias

 $H = \text{Id lifts to } \mathbf{Set}_M \text{ for any monad via } \lambda = \text{id} : M \to M.$

Proposition

For $\lambda = id$ the following are equivalent for $a : A \rightarrow MA$:

- 1. a is a λ -cia.
- 2. $\mu_A \cdot Ma : MA \rightarrow MA$ has a unique fixed point $a_0 \in MA$ and is "increasing" for some well-founded order on $MA \setminus \{a_0\}$.

Unary λ -Cias

 $H = \text{Id lifts to } \mathbf{Set}_M \text{ for any monad via } \lambda = \text{id} : M \to M.$

Proposition

For $\lambda = id$ the following are equivalent for $a : A \rightarrow MA$:

- 1. a is a λ -cia.
- 2. $\mu_A \cdot Ma : MA \rightarrow MA$ has a unique fixed point $a_0 \in MA$ and is "increasing" for some well-founded order on $MA \setminus \{a_0\}$.

Examples

- 1. $\eta_A : A \to MA$ is a λ -cia iff $MA \cong 1$.
- 2. Maybe monad: $a_0 = \bot$; *a* is a λ -cia iff for some well-founded order >, $a(b) = \bot$ or a(b) > b for all $b \in A$.

(日)

Powerset monad: a₀ = ∅; a is a λ-cia iff the dual of the corresponding graph is well-founded.