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Games and Logic

Aristotle: writings on syllogisms intertwined with studies on
use and aim of debate
in medieval times Logic is called dialectics
Buridan’s Sophismata e.g. Nihil et Chimera suntne fratres?
Brouwer: Mathematics should not degenerate into a game
Tarski’s definition of truth and Hintikka’s infinite game
Game Theoretic Semantics: Abelard ∀ and Eloise ∃
Given any first-order sentence φ, interpreted in a fixed
structure A, player ∃ has a, deterministic, winning strategy
for Hintikka’s game G(φ) if and only if φ is true in A in the
sense of Tarski.
GTS can be extended to cover Kripke semantics in the
case of modal logics, and generalizations, including
Hennessy Milner logic.
game theoretic account of bisimulation



Logic and Games

Lorenzen and dialogue logic
Proof theoretic semantics and dialogue games
game theoretic denotational semantics

Our starting point: an effort to understand the game paradigms,
arising in different contexts, starting from the tradition more
directly connected to “ordinary games”.



Classical combinatorial games

2-player games, Left (L) and Right (R)
games have positions
L and R move in turn
perfect knowledge: all positions are public to both players
in any position there are rules which restrict L to move to
any of certain positions (Left positions), while R may
similarly move only to certain positions (Right positions)
the game ends when one of the two players does not have
any option

Many Games played on boards are combinatorial games: Nim,
Domineering, Go, Chess.

Impartial games: for every position both players have the same
set of moves.
Partizan games: L and R may have different sets of moves.



Moves, positions, plays

The players play by choosing elements of a set Ω, called the
domain of moves of the game. As they choose, they build up an
alternating sequence

ω1, ω2, ω3, . . .

of elements of Ω. Infinite alternating sequences of moves are
called plays. Finite sequences of elements of moves are called
positions; they record where a play might have got to by a
certain time.



Conway Games

In the 1960s, Berlekamp, Conway, Guy introduced the
theory of partizan games, firstly exposed in Conway’s book
“On Numbers and Games” .
However, Conway focuses only on finite, i.e. terminating
games. Infinite games are neglected as ill-formed or trivial,
not interesting for “busy men”.
Some infinite (or loopy) games have been considered later,
but focus on specific games or on some well-behaved
classes of games. In any case games are fixed, i.e. infinite
plays are all winning for either for L or for R players. No
draws.



Infinite Games in Computer Science

Modern computing systems such as
operating systems
communication protocols
controllers

are non-terminating reactive systems, i.e. systems interacting
with their environment by exchanging information with it.

Infinite games are a fruitful metaphor for non-terminating
reactive systems, they allow to capture in a natural way the
perpetual interaction between system and environment.



Conway Games, formally

Games are identified with initial positions.
Any position p is determined by its Left and Right options,
p = (PL,PR).

The set G of games is inductively defined by:
the empty game ({}, {}) ∈ G;
if P,P ′ ⊆ G, then (P,P ′) ∈ G.

Equivalently, G is the carrier of the initial algebra (G, id) of the
functor F : Class∗ → Class∗, F (X ) = P(X )× P(X ).

Some simple games:
0 = ({}, {})
1 = ({0}, {})
−1 = ({}, {0})
∗ = ({0}, {0})



Winning Strategies

A winning strategy for L player tells, at each step,
reachable position, which is the next L move,i.e. L option,
in response to any possible last move of R, i.e. R option,
A winning strategy for R player tells, at each step, which is
the next R move, i.e. R option, in response to any possible
last move, i.e. L option, of L.
A winning strategy for I player tells, at each step, which is
the next move of the I player (the player who has started
the game), in response to any possible last move of the II
player.
A winning strategy for II player tells, at each step, which is
the next move of the II player (the player who has not
started the game), in response to any possible last move of
the I player.

Winning strategies are formalized as partial functions from
positions to moves.



Winning Strategies on Simple Games

On 0 = ({}, {}), the I player will lose (independently
whether he plays L or R), since there are no options. Thus
the II player has a winning strategy.
On 1 = ({0}, {}) there is a winning strategy for L, since, if L
plays first, then L has a move to 0, and R has no further
move; otherwise, if R plays first, then he loses, since he
has no moves.
−1 = ({}, {0}) has a winning strategy for R.
∗ = ({0}, {0}) has a winning strategy for the I player, since
he has a move to 0, which is losing for the next player.



Conway Characterization Result on Games

Determinacy Theorem. Any game has a winning strategy either
for L or for R or for I or for II.

Definition. Let x = (X L,X R), y = (Y L,Y R) be games.

x & y iff ∀xR ∈ X R. (y 6& xR) ∧ ∀yL ∈ Y L. (yL 6& x) .

– x > y iff x & y ∧ y 6& x
– x ∼ y iff x & y ∧ y & x
– x ||y (x fuzzy y) iff x 6& y ∧ y 6& x

Characterization Theorem. Let x be a game. Then
x > 0 (x is positive) iff x has a winning strategy for L.
x < 0 (x is negative) iff x has a winning strategy for R.
x ∼ 0 (x is zero) iff x has a winning strategy for II.
x ||0 (x is fuzzy) iff x has a winning strategy for I.



Hypergames and non-losing Strategies

The set of Hypergames H is the carrier of the final coalgebra
(H, id) of the functor F : Class∗ → Class∗ on classes of
non-wellfounded sets, F (X ) = P(X )× P(X ).

Coinduction Principle. Two hypergames p,q are equal iff there
exists a relation R s.t. pRq, where R is a hyperbisimulation, i.e.

xRy =⇒ (∀xL ∈ X L.∃yL ∈ Y L.xLRyL) ∧
(∀xR ∈ X R.∃yR ∈ Y R.xRRyR) .

Plays on hypergames can be non-terminating.
A non-terminating play is a draw.
The notion of winning strategy is replaced by that of non-losing
strategy.



Simple hypergames

c = ({c}, {c}). Any player (L, R, I, II) has a non-losing
strategy, since there is only the non-terminating play
consisting of infinite c’s.
a = ({b}, {}) and b = ({}, {a}). If L plays as II on a, then
he immediately wins since R has no move. If L plays as I,
then he moves to b, then R moves to a and so on, an
infinite play is generated. This is a draw. Hence L has a
non-losing strategy on a. Simmetrically, b has a non-losing
strategy for R.



The Space of Hypergames

Theorem. Any hypergame has a non-losing strategy at least for
one of the players L, R, I, II.

The space of hypergames:

According to Theorem 4 above, the space of hypergames can be decomposed
as in Figure 1. For example, the game c = ({c}, {c}) belongs to the center of
the space, while the games a = ({b}, {}) and b = ({}, {a}) belong to the sectors
marked with L, II and R, II, respectively.

L, R, I, IIL, R, I, II. .
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Fig. 1. The space of hypergames.

3.1 Characterization Theorem for non-losing Strategies

The generalization to hypergames of Theorem 2 of Section 2 is quite subtle,
because it requires to extend the relation ! to hypergames, and this needs par-
ticular care. We would like to define such relation by coinduction, as the greatest
fixpoint of a monotone operator on relations, however the operator which is natu-
rally induced by the definition of ! on games (see Definition 4) is not monotone.
This problem can be overcome as follows.

Observe that the relation ! on games is defined in terms of the relation !!.
Vice versa !! is defined in terms of !. Therefore, on hypergames the idea is to
define both relations at the same time, as the greatest fixpoint of the following
operator on pairs of relations:

Definition 6. Let Φ : P(H×H)×P(H×H) −→ P(H×H)×P(H×H) be the
operator defined by:

Φ(R1,R2) = ({(x, y) | ∀xR.yR2x
R ∧ ∀yL.yLR2x},

{(x, y) | ∃xR.yR1x
R ∨ ∃yL.yLR1x})

The above operator turns out to be monotone componentwise. Thus we can
define:

Definition 7. Let the pair ( !, !!) be the greatest fixpoint of Φ.
Furthermore, we define:
– x >y iff x !y ∧ y !!x
– x ∼ y iff x !y ∧ y !x
– x||y iff x !!y ∧ y !!x
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Extending the relation & on hypergames

Problem: a direct extension of & on hypergames is not
possible, since the associated operator is not monotonic.

Idea: define both relations & and 6& at the same time, as the
greatest fixpoint of the monotone operator
Φ : P(H×H)× P(H×H) −→ P(H×H)× P(H×H)

Φ(R1,R2) = ({(x , y) | ∀xR.yR2xR ∧ ∀yL.yLR2x},
{(x , y) | ∃xR.yR1xR ∨ ∃yL.yLR1x})

Coinduction Principles: We call Φ-bisimulation a pair of
relations (R1,R2) such that (R1,R2) ⊆ Φ(R1,R2). The
following principles hold:

(R1,R2) Φ-bisimulation xR1y
x &y

(R1,R2) Φ-bisimulation xR2y
x 6&y



Characterization Theorem on Hypergames

Theorem.
x >0 (x is positive) iff x has a non-losing strategy for L.
x <0 (x is negative) iff x has a non-losing strategy for R.
x ∼ 0 (x is zero) iff x has a non-losing strategy for II.
x ||0 (x is fuzzy) iff x has a non-losing strategy for I.

Remark. The relations & and 6& are not disjoint.
E.g. the game c = ({c}, {c}) is such that both c &0 and c 6&0
(and also 0 &c and 0 6&c) hold.
This is consistent with the fact that some hypergames have
non-losing strategies for more than one player.



Combining Hypergames: coalgebraic sum

Using sum, a compound game can be built where, at each step,
players can play on one of the components.

x + y = ({xL + y | xL ∈ X L} ∪ {x + yL | yL ∈ Y L},
{xR + y | xR ∈ X R} ∪ {x + yR | yR ∈ Y R}) .

Hypergame Sum is given by the the final morphism
+ : (H×H, α+) −→ (H, id), where the coalgebra morphism
α+ : H×H −→ F (H×H) is defined by
α+(x , y) = ({(xL, y) | xL ∈ X L} ∪ {(x , yL) | yL ∈ Y L},

{(xR, y) | xR ∈ X R} ∪ {(x , yR) | yR ∈ Y R}) .

Hypergame sum resembles that of shuffling on processes.
It coincides with interleaving, when impartial games are
considered.



The Theory of Impartial Games: Nim

Nim is played with a number of heaps of matchsticks.
The legal move is to strictly decrease the number of
matchsticks in any heap.
A player unable to move because no sticks remain is the
loser.
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Fig. 1. The graph of an impartial hypergame, and Smith’s marking.
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Nim as a Conway Game

The Nim game with one heap of size n can be represented as
the Conway game ∗n, defined (inductively) by

∗n = {∗0, ∗1, . . . , ∗(n − 1)} .
Namely, with a heap of size n, the options of the next player
consist in moving to a heap of size 0,1, . . . ,n − 1.

Nim games correspond to von Neumann finite numerals in Set
Theory.

Winning strategy: if n = 0, the II player wins; otherwise player I
has a winning strategy, moving to ∗0.

General Nim with heaps of sizes n1, . . . ,nk : is the sum of k
single-heap Nim games.

Sum of Nim numbers: ∗n1 + ∗n2 = ∗n.
The Nim sum amounts to binary sum without carries.
E.g. ∗1 + ∗3 = ∗2, since 01⊕ 11 = 10.



Grundy-Sprague Result on Impartial Games

Theorem. [Grundy39-Sprague35] Any impartial game behaves
as a single-heap Nim game.

Mex Algorithm to compute (inductively) the Nim number:
If the Nim numbers of the options of x are n0,n1, . . ., then the
Nim number of x is the minimal excludent (mex) of n0,n1, . . .
The mex of a list of numbers n0,n1, . . . is the least natural
number which does not appear among n0,n1, . . .



Graphs of Impartial Games

Impartial games correspond to wellfounded sets and can be
represented as (acyclic) directed graphs

nodes: positions
directed edges: from a position p to a position q, when there is
a move from p to q.

Game Graph: Mex Marking:
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via delle Scienze 206, 33100 Udine, Italy.

furio.honsell@comune.udine.it, lenisa@dimi.uniud.it

Abstract. Using coalgebraic methods, we extend Conway theory of games
to include infinite games (hypergames). We take the view that a hyper-
game which goes on forever is a draw, and hence rather than focussing on
winning strategies, we focus on non-losing strategies. Infinite games are a
fruitful metaphor of non-terminating processes, Conway’s sum of games
being similar to shuffling. Contrary to what Conway says, hypergames
have a rather interesting theory, already in the case of generalized Nim.
The theory of hypergames generalizes Conway theory rather smoothly,
but significantly. We indicate a number of intriguing directions for fu-
ture work. We briefly compare infinite games with other notions of games
used in computer science.
Keywords: Conway games, coalgebraic games, non-losing strategies.

A
!!!! """

" 1
!!!!! """

""

B
!!!!

##
"""

" C 2
!!!!!

##
"""

"" 0

D
"""

"
!!!!

E
"""

" 1
"""

""
!!!!!

1
"""

""

G H I 0 0 0

Fig. 1. The graph of an impartial hypergame, and Smith’s marking.
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Impartial Hypergames

Impartial hypergames can be represented by cyclic graphs.

Canonical hypergames extend Nim games with:

∗∞∅ = {∗∞∅}

∗∞K = {∗∞∅} ∪ {∗k | k ∈ K}

Lemma. ∗∞K is winning for I iff 0 ∈ K , otherwise it is a draw.

Theorem. Any impartial hypergame behaves either like a Nim
game or like a hypergame of the shape ∗∞K .



Hypergame Marking Algorithm, based on Smith
Algorithm

A position p in the graph will be marked with the number n if the
following conditions hold.

Firstly, n must be the mex of all numbers that already
appear as marks of any of the options of p.
Secondly, each of the positions immediately following p
which has not been marked with some number less than n
must already have an option marked by n.
We continue in this way until it is impossible to mark any
further node with any ordinal number, and then attach the
symbol∞ to any remaining node.
Finally, the label of a position marked as n is n, while the
label of an unmarked position is the symbol∞ followed by
the labels of all marked options as subscripts.



Traffic Jam
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Fig. 2. The graph of an impartial hypergame, and Smith’s marking.

Theorem 7 (see [Con01], pag. 134). A position marked as n is a II player
win if and only if n is 0, otherwise it is a I player win. A position marked by∞K ,
where K is a set of naturals, is a I player win if and only if 0 ∈ K, otherwise it
is a draw.

The above theorem can be proved by induction on n. The idea underlying
such technique is that a node marked by n behaves as the Nim game ∗n. This can
be viewed as a “canonical game” ∼-corresponding to the given node. However,
the theory, as it is presented in the literature, is not completely satisfactory for
∞ nodes, since ∞ symbols do not correspond to “canonical infinite games”. In
the sequel, we show how to do this in our setting of hypergames.

Let us consider a position p marked with ∞K . We claim that such node
behaves as the (canonical) hypergame

∗∞K = {∗∞} ∪ {∗k | k ∈ K} ,

where ∗∞ = {∗∞}.
Namely, one can show that:

Theorem 8. If x is the canonical hypergame associated to a position p in a
graph, then
x||0 iff x has a non-losing strategy for I.
x ∼ 0 iff x has a non-losing strategy for II.

Proof. For positions marked by n, the thesis follows immediately from Theo-
rem 7. Then let p be a position marked by ∞K . Using Theorem 7, we only need
to prove that:
(a) the hypergame ∗∞K has subscript 0 iff ∗∞K ||0 but not ∗∞K ∼ 0;
(b) the hypergame ∗∞K has no subscript 0 iff ∗∞K ||0 and ∗∞K ∼ 0.
(a ⇒) First of all, notice that ∗∞ is such that ∗∞ !0 and 0 ! ∗ ∞. Assume
0 ∈ K. Then ∗∞K '!0, since 0 ! ∗∞. Similarly 0 '! ∗∞K , since ∗∞ !0. Hence
∗∞K ||0. Moreover, neither ∗∞K !0 nor 0 ! ∗ ∞K hold, since 0 '!0 does not
hold.
(a ⇐) Assume ∗∞K ||0, but not ∗∞K ∼ 0. Assume by contradiction that 0 is
not subscript of ∞K . Then, since for all k ∈ K. ∗ k '!0 ∧ 0 '! ∗ k, we have
∗∞K ∼ 0. Contradiction.
(b ⇒) Assume 0 '∈ K. Then ∗∞K ||0, since ∗∞ !0 and 0 ! ∗ ∞. Moreover
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Traffic Jams and Generalized Sums

More than one vehicle is considered.
Each town is big enough to accommodate all vehicles at
once, if needed.
At each step, the current player chooses a vehicle to move.

Such game corresponds to the sum of the hypergames with
single vehicles.

To compute non-losing strategies, we use the generalized Nim
sum, which amounts to the Nim sum extended to∞-nodes as
follows:

∗n +∗∞K = ∗∞K +∗n = ∗∞{∗k+∗n | k∈K} ∗∞K +∗∞H = ∗∞ .

Example: if vehicles are at positions H and I, then the game is
winning for I player, since ∗2 + ∗∞1,2 = ∗∞∗2+∗1,∗2+∗2 = ∗∞3,0.
While a game with vehicles in I and J is a draw, since
∗∞1,2 + ∗∞2 = ∗∞.



Future Work

Alternative winning strategies. In the literature, various
notions of winning strategies have been considered. For
example, misère is the variant where the roles of winner
and loser are exchanged. Moreover, various notions of
winning strategies, especially devised for infinite games,
have been considered.
Compound hypergames. The (disjunctive) sum is used for
building compound (hyper)games. However, there are
several different ways of combining (hyper)games.
Trace categories of hypergames and strategies. Joyal77
introduced a traced category of Conway games and
winning strategies. It would be interesting to investigate
analogous categories for hypergames. Cfr. also game
categories of Abramsky er al., Hyland-Ong.


