On decidability of bigraphical sortings

Giorgio Bacci Davide Grohmann

Department of Mathematics and Computer Science University of Udine, Italy

CALCO-jnr, September, 6 2009

CALCO = 2009

Outline

- + Bigraphical framework
- + Sortings and Predicate Sortings
- + Undecidability of Sortings
- + Subclass of decidable Sortings

Outline

+ Bigraphical framework

Sortings and Predicate Sortings
 Undecidability of Sortings
 Subclass of decidable Sortings

Bigraphical Framework

- Bigraphical models are an emerging framework for concurrency and mobility.
- Long term aim: "to express as much as possible of worldwide distributed computing in one mathematical model" (Milner 2001).
- + Bigraphs aim to be such a **framework**, i.e., unifying model for computations based on communications and locality.
- + Many calculi have been represented in bigraphs: CCS, π -calculus, Petri nets, ...
- + ... but they can be applied also for dealing with Systems Biology! (as shown yesterday at MeCBIC 2009)

Each node v_0, v_1, \ldots has an associate control which specifies its arity (i.e., a set of ports).

Names

Outer names represents global open links. Inner names represents connections coming from "sub-bigraphs".

Placing

Nodes can be nested, instead edges are not subject to positions. Sites are holes which can be fitted by roots of other bigraphs.

a bigraph = a place graph + a link graph

Dynamics: reaction rules

Dynamics: reaction rules

Dynamics: reaction rules

Outline

+ Bigraphical framework
+ Sortings and Predicate Sortings
+ Undecidability of Sortings
+ Subclass of decidable Sortings

Sorting Motivations

What a sorting gives you

- + Techniques to specific a sort/typing over bigraph's elements, that is nodes and edges.
- + Techniques to impose a formation rule that limits the admissible bigraphs, that is it rules out unwanted bigraphs.

Why sortings?

Bigraphs is a very general framework, maybe even too general! Leifer and Milner claimed that:

Sortings are likely to be needed in any significant application.

Remarkable property

Sortings preserve the behavioral theory of bigraph.

Definition (Sorting)

A sorting for a category C is a functor $F : X \to C$ that is faithful and surjective on objects.

Definition (Decomposible Predicate)

A predicate P on morphisms is *decomposible* iff it reflects identities and $P(f \circ g)$ implies P(f) and P(g).

Theorem (Factorization)

A predicate P is decomposible iff there exists a set Φ of morphisms such that P(f) iff for any g, ψ, h if $f = g \circ \psi \circ h$ then $\psi \notin \Phi$.

Intuitively

The set Φ describes all the unwanted processes/systems, so a *Predicate Sorting* rules out all the unwanted systems.

Sortings by examples: CCS - I

CCS

Syntax:
$$\alpha ::= a \mid \bar{a}$$
 $P ::= \mathbf{0} \mid \sum_{i} \alpha_{i} \cdot P_{i} \mid P \mid P$

Semantics: $(a.P + \sum_{i} \alpha_{i}.P_{i})|(\bar{a}.Q + \sum_{j} \alpha_{j}.Q_{j}) \rightarrow P|Q$

In Bigraphs:

Sortings by examples: CCS - II

CCS

Syntax:
$$\alpha ::= a \mid \bar{a}$$
 $P ::= \mathbf{0} \mid \sum_{i} \alpha_{i} \cdot P_{i} \mid P \mid P$
Semantics: $(a \cdot P + \sum_{i} \alpha_{i} \cdot P_{i}) \mid (\bar{a} \cdot Q + \sum_{i} \alpha_{i} \cdot Q_{i}) \rightarrow P \mid Q$

"Bad-formed" bigraphs:

Solution

Define a predicate sorting by defining the set Φ (of unwanted bigraphs) as the set containing the above bigraphs.

Sortings by examples: π -calculus - I

π -calculus

Syntax:
$$\alpha ::= a(x) \mid \overline{a}b$$
 $P ::= \mathbf{0} \mid \sum_{i} \alpha_{i} \cdot P_{i} \mid P \mid P$

Semantics: $(a(x).P + \sum_{i} \alpha_{i}.P_{i})|(\bar{a}b.Q + \sum_{j} \alpha_{j}.Q_{j}) \rightarrow P\{b/x\}|Q$

In Bigraphs:

 $\mathsf{alt.}\,(\mathsf{send}_{xy}.d_0\,|\,d_1)\,|\,\mathsf{alt.}\,(\mathsf{get}_{x(z)}.d_2\,|\,d_3) \longrightarrow x\,|\,d_0\,|\,{}^{y_{/(z)}}.d_2$

Sortings by examples: π -calculus - II

π -calculus

Syntax:
$$\alpha ::= a(x) | \bar{a}b$$
 $P ::= \mathbf{0} | \sum_i \alpha_i P_i | P | P$
Semantics: $(a(x).P + \sum_i \alpha_i P_i) | (\bar{a}b.Q + \sum_i \alpha_j Q_j) \rightarrow P\{b/x\} | Q$

"Bad-formed" bigraphs:

Solution

Again use a Predicate Sorting.

Outline

+ Bigraphical framework
+ Sortings and Predicate Sortings
+ Undecidability of Sortings
+ Subclass of decidable Sortings

Undecidability of (Predicate) Sortings

The problem

To decide if a bigraph is in a predicate sorted category involves to decide if a bigraph belongs to the set Φ .

Idea

Reduce the problem to a undecidability problem: to decide if a word $w \in \{a, b\}^*$ belongs to a co-RE language $\mathcal{L} \subset \{a, b\}^*$.

Encoding of words ([-]):

The reduction

+ Let \mathcal{L} be co-RE language.

+ Take
$$\Phi = \llbracket \mathcal{L} \rrbracket$$
.

+ Let a bigraph
$$f = g \circ \psi \circ h$$
.

+ Does the bigraph ψ belong to Φ ?

To decide if a bigraph ψ belongs to Φ is undecidable

even if there are **finite** possible decompositions $f = g \circ \psi \circ h$

The reduction

+ Let \mathcal{L} be co-RE language.

+ Take
$$\Phi = \llbracket \mathcal{L} \rrbracket$$
.

+ Let a bigraph
$$f = g \circ \psi \circ h$$
.

+ Does the bigraph ψ belong to Φ ?

To decide if a bigraph ψ belongs to Φ is undecidable

even if there are **finite** possible decompositions $f = g \circ \psi \circ h$

Outline

+ Bigraphical framework
+ Sortings and Predicate Sortings
+ Undecidability of Sortings

+ Subclass of decidable Sortings

Decidable Sortings

Are there decidable Sortings? Yes!

Observation

To find an "unwanted bigraph" resembles the matching problem, i.e., to find a (sub)bigraph inside another one.

Idea of how to construct decidable Sortings

- 1. Take a recursive set M of unwanted bigraphs.
- 2. Define $\Phi = \{ m \otimes id_X \mid m \in M \land X \text{ is a name set} \}.$
- 3. Specialize the Factorization Theorem.

Theorem

P is match-decomposable iff there exists Φ finite such that *P*(*f*) iff for any g, ψ, h, X if $f = g \circ (\psi \otimes id_X) \circ h$ then $(\psi \otimes id_X) \notin \Phi$.

Matching by an example

Matching by an example

How to decide the matching problem

- 1. Transform the agent and the redex into their normal forms.
 - 2. Use the inference systems from [Damgaard et al., 2007] to derive the context and the parameters.

What about the Sortings for CCS and π -calculus?

Independence from identities

- + Sorted elements do not depend on identities.
- + Sorting on nestings and linkings are also independent from ids.
- + Our Sortings are "Homset Independent".

Conclusion and Future Work

Done

- + We have proved that (Predicate) Sortings are undecidable.
- + We have shown a way to construct decidable Sortings, based on the decidability of the matching problem.
- + Those Sortings are powerful enough to capture some of the Sortings introduced in literature.

To do

- + Study if other known Sortings can be expressed with our construction.
- + Analyze the complexity of our approach.
- + Investigate if more optimized algorithms exist.
- + Integration into Tools?