
On decidability of bigraphical sortings

Giorgio Bacci Davide Grohmann

Department of Mathematics and Computer Science
University of Udine, Italy

CALCO-jnr, September, 6 2009

1 / 22

Outline

+ Bigraphical framework

+ Sortings and Predicate Sortings

+ Undecidability of Sortings

+ Subclass of decidable Sortings

2 / 22

Outline

+ Bigraphical framework

+ Sortings and Predicate Sortings

+ Undecidability of Sortings

+ Subclass of decidable Sortings

2 / 22

Bigraphical Framework

+ Bigraphical models are an emerging framework for
concurrency and mobility.

+ Long term aim: “to express as much as possible of worldwide
distributed computing in one mathematical model” (Milner
2001).

+ Bigraphs aim to be such a framework, i.e., unifying model for
computations based on communications and locality.

+ Many calculi have been represented in bigraphs: CCS,
π-calculus, Petri nets, . . .

+ . . . but they can be applied also for dealing with Systems
Biology! (as shown yesterday at MeCBIC 2009)

3 / 22

An example of a bigraphThe anatomy of bigraphs

1

1

y1 y2

M

x1

0

v1

x0

y0

site

node

control

inner name

outer name

port

edge

v0

0

K
K

e0

e1
v2

root (region)

place = root or node or site

point = port or inner name

link = edge or outer name

16

Nodes

Each node v0, v1, . . . has an associate control which specifies its
arity (i.e., a set of ports).

4 / 22

An example of a bigraphThe anatomy of bigraphs

1

1

y1 y2

M

x1

0

v1

x0

y0

site

node

control

inner name

outer name

port

edge

v0

0

K
K

e0

e1
v2

root (region)

place = root or node or site

point = port or inner name

link = edge or outer name

16

Edges

Edges e0, e1, . . . represent global closed links.

4 / 22

An example of a bigraphThe anatomy of bigraphs

1

1

y1 y2

M

x1

0

v1

x0

y0

site

node

control

inner name

outer name

port

edge

v0

0

K
K

e0

e1
v2

root (region)

place = root or node or site

point = port or inner name

link = edge or outer name

16

Names

Outer names represents global open links.
Inner names represents connections coming from “sub-bigraphs”.

4 / 22

An example of a bigraphThe anatomy of bigraphs

1

1

y1 y2

M

x1

0

v1

x0

y0

site

node

control

inner name

outer name

port

edge

v0

0

K
K

e0

e1
v2

root (region)

place = root or node or site

point = port or inner name

link = edge or outer name

16

Ports

Ports ask for connections to open or closed links.

4 / 22

An example of a bigraphThe anatomy of bigraphs

1

1

y1 y2

M

x1

0

v1

x0

y0

site

node

control

inner name

outer name

port

edge

v0

0

K
K

e0

e1
v2

root (region)

place = root or node or site

point = port or inner name

link = edge or outer name

16

Placing

Nodes can be nested, instead edges are not subject to positions.
Sites are holes which can be fitted by roots of other bigraphs.

4 / 22

a bigraph = a place graph + a link graph

RESOLVING A BIGRAPH INTO PARTS

GP : m→n

roots . . .

sites . . .

GL : X →Y

bigraph

place graph link graph

G : 〈m, X〉→〈n, Y 〉

. . . inner names

. . . outer names

v2

v3

0 1

v0

v1

v1

v0

v2

0

v3

1

v1

v3
v0

v2

1

2

x0 x1

y0 y1

21

y0 y1

0

0 x0 x1

22

5 / 22

Dynamics: reaction rules
The complete system H ◦ G

A
A

A

R
R

B

y

C
C

RA

B

C

A

R

C

H ◦ G

11

. and after one reaction

A
A

A

R
R

B

y

C
C

RA

B

C

A

R

C

A
A

A

R
R

B

y

C
C

H ◦ G

RA

B

C

A

R

C

12

Three possible reaction rules

(3)

(1)

(2)

A

A

C

A R

A

A

C

A

R

15

Three possible reaction rules

(3)

(1)

(2)

A

A

C

A R

A

A

C

A

R

15

Three possible reaction rules

(3)

(1)

(2)

A

A

C

A R

A

A

C

A

R

15

6 / 22

Dynamics: reaction rules
The complete system H ◦ G

A
A

A

R
R

B

y

C
C

RA

B

C

A

R

C

H ◦ G

11

. and after two reactions

A
A

A

R
R

B

y

C
C

R

B

A

R

C
A

C

A
A

A

R
R

B

y

C
C

H ◦ G

RA

B

C

A

R

C

13

Three possible reaction rules

(3)

(1)

(2)

A

A

C

A R

A

A

C

A

R

15

Three possible reaction rules

(3)

(1)

(2)

A

A

C

A R

A

A

C

A

R

15

Three possible reaction rules

(3)

(1)

(2)

A

A

C

A R

A

A

C

A

R

15

6 / 22

Dynamics: reaction rules
The complete system H ◦ G

A
A

A

R
R

B

y

C
C

RA

B

C

A

R

C

H ◦ G

11

. and after three reactions

A
A

A

R
R

B

y

C
C

R

B

A

R

C
A

C

A
A

A

R
R

B

y

C
C

H ◦ G

RA

B

C

A

R

C

14

Three possible reaction rules

(3)

(1)

(2)

A

A

C

A R

A

A

C

A

R

15

Three possible reaction rules

(3)

(1)

(2)

A

A

C

A R

A

A

C

A

R

15

Three possible reaction rules

(3)

(1)

(2)

A

A

C

A R

A

A

C

A

R

15

6 / 22

Outline

+ Bigraphical framework

+ Sortings and Predicate Sortings

+ Undecidability of Sortings

+ Subclass of decidable Sortings

7 / 22

Sorting Motivations

What a sorting gives you

+ Techniques to specific a sort/typing over bigraph’s elements,
that is nodes and edges.

+ Techniques to impose a formation rule that limits the
admissible bigraphs, that is it rules out unwanted bigraphs.

Why sortings?

Bigraphs is a very general framework, maybe even too general!
Leifer and Milner claimed that:
Sortings are likely to be needed in any significant application.

Remarkable property

Sortings preserve the behavioral theory of bigraph.

8 / 22

Sortings and Predicate Sortings

Definition (Sorting)

A sorting for a category C is a functor F : X → C that is faithful
and surjective on objects.

Definition (Decomposible Predicate)

A predicate P on morphisms is decomposible iff it reflects identities
and P(f ◦ g) implies P(f) and P(g).

Theorem (Factorization)

A predicate P is decomposible iff there exists a set Φ of morphisms
such that P(f) iff for any g , ψ, h if f = g ◦ ψ ◦ h then ψ /∈ Φ.

Intuitively

The set Φ describes all the unwanted processes/systems, so a
Predicate Sorting rules out all the unwanted systems.

9 / 22

Sortings by examples: CCS - I

CCS

Syntax: α ::= a | ā P ::= 0 |∑i αi .Pi | P|P
Semantics: (a.P +

∑
i αi .Pi)|(ā.Q +

∑
j αj .Qj)→ P|Q

In Bigraphs:

10 / 22

Sortings by examples: CCS - II

CCS

Syntax: α ::= a | ā P ::= 0 |∑i αi .Pi | P|P
Semantics: (a.P +

∑
i αi .Pi)|(ā.Q +

∑
j αj .Qj)→ P|Q

“Bad-formed” bigraphs:

alt
alt

get,send

get,send

Solution

Define a predicate sorting by defining the set Φ (of unwanted
bigraphs) as the set containing the above bigraphs.

11 / 22

Sortings by examples: π-calculus - I

π-calculus

Syntax: α ::= a(x) | āb P ::= 0 |∑i αi .Pi | P|P
Semantics: (a(x).P +

∑
i αi .Pi)|(āb.Q +

∑
j αj .Qj)→ P{b/x}|Q

In Bigraphs:

12 / 22

Sortings by examples: π-calculus - II

π-calculus

Syntax: α ::= a(x) | āb P ::= 0 |∑i αi .Pi | P|P
Semantics: (a(x).P +

∑
i αi .Pi)|(āb.Q +

∑
j αj .Qj)→ P{b/x}|Q

Bigraphs with “sorted edges”:

“Bad-formed” bigraphs:

Solution

Again use a Predicate Sorting.
13 / 22

Outline

+ Bigraphical framework

+ Sortings and Predicate Sortings

+ Undecidability of Sortings

+ Subclass of decidable Sortings

14 / 22

Undecidability of (Predicate) Sortings

The problem

To decide if a bigraph is in a predicate sorted category involves to
decide if a bigraph belongs to the set Φ.

Idea

Reduce the problem to a undecidability problem: to decide if a
word w ∈ {a, b}∗ belongs to a co-RE language L ⊂ {a, b}∗.

Encoding of words (J−K):

JεK =
str

JaabK =

str
a

a
b

15 / 22

The reduction

+ Let L be co-RE language.

+ Take Φ = JLK.

+ Let a bigraph f = g ◦ ψ ◦ h.

+ Does the bigraph ψ belong to Φ?

To decide if a bigraph ψ belongs to Φ
is undecidable

even if there are finite possible decompositions
f = g ◦ ψ ◦ h

16 / 22

The reduction

+ Let L be co-RE language.

+ Take Φ = JLK.

+ Let a bigraph f = g ◦ ψ ◦ h.

+ Does the bigraph ψ belong to Φ?

To decide if a bigraph ψ belongs to Φ
is undecidable

even if there are finite possible decompositions
f = g ◦ ψ ◦ h

16 / 22

Outline

+ Bigraphical framework

+ Sortings and Predicate Sortings

+ Undecidability of Sortings

+ Subclass of decidable Sortings

17 / 22

Decidable Sortings

Are there decidable Sortings? Yes!

Observation

To find an “unwanted bigraph” resembles the matching problem,
i.e., to find a (sub)bigraph inside another one.

Idea of how to construct decidable Sortings

1. Take a recursive set M of unwanted bigraphs.

2. Define Φ = {m ⊗ idX | m ∈ M ∧ X is a name set}.
3. Specialize the Factorization Theorem.

Theorem

P is match-decomposable iff there exists Φ finite such that P(f) iff
for any g , ψ, h,X if f = g ◦ (ψ ⊗ idX) ◦ h then (ψ ⊗ idX) /∈ Φ.

18 / 22

Matching by an example
T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

19 / 22

Matching by an example
T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

19 / 22

How to decide the matching problem

1. Transform the agent and the redex
into their normal forms.

2. Use the inference systems from
[Damgaard et al., 2007] to derive
the context and the parameters.

T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 10

a

id⊗ ωa

agent
=

d

idZ
R

ωR id

idZ!Y C

id⊗ ωC

context

redex

agent︷ ︸︸ ︷
(id⊗ ωa)a =

context︷ ︸︸ ︷
(id⊗ ωC)(idZ!Y ⊗ C)(idZ ⊗

redex︷ ︸︸ ︷
(id⊗ ωR)R)d.

Fig. 3. Illustrating valid matching sentences

expresses how any bigraph may be decomposed into a global wiring ω, and a discrete
bigraph D (cf. Section 2.5).

Proposition 3.1 (Discrete decomposition). Any bigraph G can be decomposed into
a composition of the following form

G = (ω ⊗ id)(D ⊗ idY),

where D is discrete and with local innerface. Any other decomposition of G on this form
takes the form G = (ω′ ⊗ id)(D′ ⊗ idY), where ω′ = ω(α ⊗ idY) and D′ = (α−1 ⊗ id)D,
for suitable α.

The proof follows easily from the normal form theorem in (Damgaard and Birkedal,
2006), which also gives a number of normal forms for name-discrete, prime and molecular
bigraphs. We shall not go into detail with these forms in this section, but as they are
central in proving completeness of the characterization, we shall return to them in the
Appendix.

3.2. Matching Sentences

We now define matching sentences and rules for deriving valid matching sentences.

Definition 3.2 (Matching sentence). A matching sentence is a 7-place relation among
wirings and bigraphs, written ωa, ωR, ωC " a,R ↪→C, d, where ωa, ωR, ωC are wirings,
and a, R, C, d are discrete bigraphs, R and C have local inner faces, and R is regular.

Definition 3.3 (Valid matching sentence). A matching sentence ωa, ωR, ωC " a,R ↪→C, d,
where ωR :→ Y , and d has global outer names Z, is valid, denoted ωa, ωR, ωC !
a,R ↪→C, d, iff

(id⊗ ωa)a = (id⊗ ωC)(C ⊗ idY ⊗ idZ) (idZ ⊗ (id⊗ ωR) R) d.

where unqualified identities are local and determined from their context.

Note that for a valid sentence ωa, ωR, ωC " a,R ↪→C, d, if we let a′ = (id ⊗ ωa)a, C ′ =
(id⊗ ωC)(C ⊗ idY ⊗ idZ), and R′ = (id⊗ ωR)R, then a′ = C ′(R′ ⊗ idZ)d. Conversely, if,
for general a′, C ′, R′, d we have a match a′ = C ′(R′ ⊗ idZ)d, then by Proposition 3.1,

T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner 2

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. A bigraph a = C ◦ (idz ⊗R) ◦ d. Reaction rule R → R′ copies data between

connected folders.

al. has begun to adress the first aim, in particular, to show how to give bigraphical models
of context-aware systems (Birkedal et al., 2006b).

As suggested and argued in (Jensen and Milner, 2004; Birkedal et al., 2006b,a) it
would be very useful to have an implementation of the dynamics of bigraphical reac-
tive systems to allow experimentation and simulation. In the Bigraphical Programming

An Inductive Characterization of Matching in Binding Bigraphs 17

4. An Example: Inferring a Match

In this section, we give an inference tree for inferring the match in the example depicted
in Figure 1. To fit the inference tree in three reasonably small figures (Figures 11, 12,
and 13), we use a more humble visual style, than in Figure 1, to depict roots, nodes and
names.

Roots are only drawn when there are more than one; in that case we use a dashed sepa-
rating line to indicate separate roots (see for example the conclusion of par in Figure 11).
Controls of nodes are indicated with the shape (and colour) of the node: Buildings are
(blue) rectangles, laptops are (gray) rectangles with rounded corners, folders are (yellow)
circles, and data-nodes are black squares with a D inside. Instead of the name consultancy
we use n and instead of corporation we use c. Finally, we do not depict the basic redex
R and parameter d, which are illustrated already in Figure 1.

close

merge

par

(details elided)

n

n

e

e0

, idε,

n

n

e

e0

! D

n e0

, idε ↪→ D

n e0

, idε

D0

n

n

e0

e

e1 c

c

, idε,

n

n

e0

e

z c

c

! D D D D

n e0 e1 c

, R ↪→ D

n e0 c

y , d

n

n

e0

e

e1 c

c

, idε,

n

n

e0

e

z c

c

! D D D D

n e0 e1 c

, R ↪→ D

n e0 c

y , d

n

n

e0 e1 c

c

, idε,

n

n

e0 z c

c

! D D D D

n e0 e1 c

, R ↪→ D

n e0 c

y , d

Fig. 11. Inferring the match in Figure 1

We build the inference bottom up and start by decomposing a and C discretely to
obtain a sentence that we aim to prove as the conclusion of an application of close in
Figure 11. (Note that in contrast to a and C, bigraphs R and d are already discrete as
depicted in Figure 1.) The application of close allows us to match and introduce the
edge between names e0 and e1 in the agent, and between names e0 and z in the context.
We are building an inference bottom up, so in the premiss we simply introduce a fresh
outer name e to map these names to.

Next, we aim to use an application of par to pair up two inferences of matches between
top-level nodes of the agent and the context. The top-level nodes of the agent and the

20 / 22

What about the Sortings for CCS and π-calculus?

alt
alt

get,send

get,send

Independence from identities

+ Sorted elements do not depend on identities.

+ Sorting on nestings and linkings are also independent from ids.

+ Our Sortings are “Homset Independent”.

21 / 22

Conclusion and Future Work

Done

+ We have proved that (Predicate) Sortings are undecidable.

+ We have shown a way to construct decidable Sortings, based
on the decidability of the matching problem.

+ Those Sortings are powerful enough to capture some of the
Sortings introduced in literature.

To do

+ Study if other known Sortings can be expressed with our
construction.

+ Analyze the complexity of our approach.

+ Investigate if more optimized algorithms exist.

+ Integration into Tools?

22 / 22

