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Preface

CALCO brings together researchers and practitioners to exchange new results
related to foundational aspects and both traditional and emerging uses of al-
gebras and coalgebras in computer science. The study of algebra and coalgebra
relates to the data, process and structural aspects of software systems.

This is a high-level, biennial conference formed by joining the forces and
reputations of CMCS (the International Workshop on Coalgebraic Methods in
Computer Science), and WADT (the Workshop on Algebraic Development Tech-
niques). The first and second CALCO conferences were held 2005 in Swansea,
Wales, and 2007 in Bergen, Norway. The third event took place 2009 in Udine,
Italy.

The CALCO Young Researchers Workshop, CALCO-jnr, was a CALCO 2009
satellite event dedicated to presentations by PhD students and by those who
completed their doctoral studies within the past few years. Attendance at the
workshop was open to all – many CALCO conference participants attended
CALCO-jnr and vice versa. The workshop had eleven contributions by authors
from nine different countries and 50 participants.

CALCO-jnr presentations were, on the basis of submitted 2-page abstracts,
selected by the programme committee. After the workshop, the authors of each
presentation were invited to submit a full 10-15 page paper on the same topic.
They were also asked to write anonymous reviews of papers submitted by other
authors on related topics. Additional reviewing was organised and the final se-
lection of papers was carried out by the programme committee. The volume of
selected papers from the workshop is published as a technical report at Udine
University. Authors will retain copyright, and are also encouraged to disseminate
the results reported at CALCO-jnr by subsequent publication elsewhere.

The CALCO-jnr PC would like to thank the workshop participants, the re-
viewers, and the CALCO 2009 local organisers for their efforts and commitment
which made this event very successful. The support of all sponsoring institutions
is gratefully acknowledged.
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On the Decidability of Bigraphical Sorting

Giorgio Bacci Davide Grohmann

Dept. of Mathematics and Computer Science, University of Udine, Italy.
Via delle Scienze 206, I-33100 Udine, Italy.
{giorgio.bacci,grohmann}@dimi.uniud.it

Abstract. Bigraphical reactive systems are a general framework for
ubiquitous and mobile computing, which is based on the concepts of lo-
cation and channel connection. Despite their expressive power, in many
cases “specialized version” of bigraphs have been defined by means of
bigraphical sortings to fit precisely the computational model at hand.
This paper investigates if (bigraphical) sortings are decidable, that is,
decide if a bigraph belongs or not to some sorting. In general it is not
the case, but we have found and proposed a decidable class of sortings
by reducing the problem at issue to the matching problem for bigraphs.

1 Introduction

Bigraphical Reactive Systems (BRSs) [13] have been proposed as a promising
meta-model for ubiquitous, mobile systems. The key feature of BRSs is that their
states are bigraphs, semi-structured data which can represent at once both the
(physical, logical) location and the connections of the components of a system.
The dynamics of agents are represented by a set of rewrite rules.

Bigraphs and BRSs are very flexible. They have been used for representing
many domain-specific calculi and models: programming languages, calculi for
concurrency and mobility, context-aware systems and web-services [11,12,2,9,4].

Despite their expressive power, in many cases some “specialized versions” of
bigraphs must be introduced. As an example, binding bigraphs [11] are necessary
to encode the π-calculus: they allow for restricting name scope to only a portion
of a bigraph’s locations. Many other variants have been presented in literature,
such as homomorphic and many-one sortings [13,12] or kind bigraphs [5].

Recently, Debois and coauthors [3] generalized the previous ad hoc construc-
tions giving a definition of sorted categories. It turns out that such categories
can be defined as particular functor S : X → C which map the sorted category
X into the original one C and are faithful and surjective on objects. Moreover,
an interesting sub-class, named predicate sortings, of those functors is identified
and defined by means of decomposable predicates P , such that P (f ◦ g) implies
P (f) and P (g). Intuitively predicate sortings rule out all the undesired bigraphs,
which are the ones that do not satisfy the predicate P .

One of the main advantages of using predicate sortings is that they provides
a general construction of sortings which always sustain the behavioural theory
of pure bigraphs, thus obviating the need to redevelop that theory for each
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new application. Anyway, this technique has also a disadvantage: the systematic
construction makes sorted categories very difficult to handle, due to the fact
that their objects are defined as pairs of sets of morphisms from the original
category, closed by prefix and suffix composition. Most of the difficulties arise
when one wants to implement effectively such construction, indeed the sets of
morphisms which form the objects of the category turn out to be undecidable
when the chosen sorting predicate is undecidable.

In order to overcome these difficulties, but at the same time keeping the
technique as general as possible (we do not want to define sortings by hand!),
we propose to look at predicate sortings from a different point of view. The
sorted category will not be constructed at all, but we will use sorting as a way of
(automatically) checking if a morphism of the original category has a pre-image
in the sorted category and, more importantly, if compositions in the non-sorted
category are still possible in its sorted variant.

The aim of this paper is to determine a decidable but expressive subclass
of predicate sortings, named match predicate sortings, for which there exists an
effective algorithm to check if a bigraph belongs to the sorted category. To do
so, we use the notion of matching, that is, all ill-formed bigraphs are ruled out if
an unwanted pattern matches into some of their sub-components. Notably, those
sortings capture a good variety of sortings in the literature.

Synopsis The paper is structured as follows. In Section 2 we recall the basics of
bigraphs, sortings and bigraphical sortings. The undecidability of the (bigraphi-
cal) sorting problem is proved in Section 3, whilst in Section 4 a decidable class
of sortings is proposed and analyzed. Many well-known sortings belong to our
class as shown in Section 5. Finally, conclusions are in Section 6.

2 Preliminaries

2.1 Bigraphs

In this section we recall Milner’s bigraphs [13]. Intuitively, a bigraph represents
an open system, so it has an inner and an outer interface to “interact” with
subsystems and the surrounding environment (see Fig. 1 for an example). The
width of the outer interface describes the roots, that is, the various locations
containing the system components; the width of the inner interface describes
the sites, that is, the holes where other bigraphs can be inserted. On the other
hand, the names in the interfaces describe the free links, that is end points where
links from the outside world can be pasted, creating new links among nodes. We
refer the reader to [13] for more details.

More formally, let K be a signature of controls, and ar : K → N be the arity
function. The arity indexes the ports of a control.

Definition 2.1 (Interfaces). An interface is a pair 〈m,X〉 where m is a finite
ordinal (called width), X is a finite set of names.
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Fig. 1. A bigraph = a place graph + a link graph (picture taken from [13]).

In the following, we denote by ] the union of already disjoint sets, that is,
S ] T , S ∪ T if S ∩ T = ∅, otherwise it is undefined.

Definition 2.2 (Bigraphs). A (pure) bigraph G : 〈m,X〉 → 〈n, Y 〉 is com-
posed by a place graph GP and a link graph GL which describe the nesting of
nodes and the (hyper-)links among nodes, respectively.

G = (V,E, ctrl, GP , GL) : 〈m,X〉 → 〈n, Y 〉 (bigraph)

GP = (V, ctrl, prnt) : m→ n (place graph)

GL = (V,E, ctrl, link) : X → Y (link graph)

where V,E are the sets of nodes and edges respectively; ctrl : V → K is the
control map, which assigns a control to each node; prnt : m ] V → V ] n is the
(acyclic) parent map (often written also as <); link : X ]P → E]Y is the link
map, where P =

∑
v∈V ar(ctrl(v)) is the set of ports.

Definition 2.3 (Bigraph category). The category of bigraphs over a signa-
ture K (written Big(K)) has interfaces as objects, and bigraphs as morphisms.

Given two bigraphs G : 〈m,X〉 → 〈n, Y 〉, H : 〈n, Y 〉 → 〈k, Z〉, the composi-
tion H ◦G : 〈m,X〉 → 〈k, Z〉 is defined by composing their place and link graphs:

1. the composition of GP : m→ n and HP : n→ k is defined as

HP ◦GP = (VG]VH , ctrlG] ctrlH , (idVG
]prntH)◦ (prntG] idVH

)) : n→ k;

2. the composition of GL : X → Y and HL : Y → Z is defined as

HL ◦GL = (VG ] VH , EG ] EH , ctrlG ] ctrlH ,
(idEG

] linkH) ◦ (linkG ] idPH
)) : X → Z.
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Fig. 2. A bigraph and its decomposition in discrete normal form

An important operation about (bi)graphs, is the tensor product. Intuitively,
this operator puts “side by side” two bigraphs, i.e., given G : 〈m,X〉 → 〈n, Y 〉
and H : 〈m′, X ′〉 → 〈n′, Y ′〉, their tensor product is G⊗H : 〈m+m′, X ]X ′〉 →
〈n+ n′, Y ] Y ′〉 defined when name sets X,X ′ and Y, Y ′ are pairwise disjoint.

As shown in [13], all bigraphs can be constructed by composition and tensor
product from a set of elementary bigraphs:

– 1: 〈0, ∅〉 → 〈1, ∅〉 is the barren (i.e., empty) root;
– mergen : 〈n, ∅〉 → 〈1, ∅〉 merges n roots into a single one;
– γm,n : 〈m+n, ∅〉 → 〈n+m, ∅〉 is a symmetry, that switches the first m roots

with the following n roots.
– /x : 〈0, {x}〉 → 〈0, ∅〉 is a closure, that is it maps x to an edge;
– y/X : 〈0, X〉 → 〈0, {y}〉 substitutes the names in X with y, i.e., it maps the

whole set X to y.
– Finally, K~x : 〈1, ∅〉 → 〈1, {x1, . . . , xn}〉 is a control which may contain other

graphs, and it has ports linked to the name in ~x = x1, . . . , xn.

A bigraph is said a renaming if it is of the form x1/{y1} ⊗ · · · ⊗ xn/{yn}
(abbreviated to ~x/~y, where ~x = x1, . . . , xn and ~y = y1, . . . , yn); a permutation if
it is formed by composition and tensor product of symmetries; a prime when it
has no inner names and its outer width is 1; finally a discrete when its link map
is a bijection.

Bigraphs can be given always in discrete normal form [13]. In this case, the
bigraph is split into two main components: wirings dealing with connections
and discrete bigraphs describing only the nesting of nodes. The latters can be
further decomposed using the algebra of bigraphs into the elementary parts:
nodes, permutations and merging of roots. An example is shown in Fig. 2.

Proposition 2.4 (Discrete Normal Form, [13, Proposition 8.15]). Every
bigraph G can be expressed uniquely (up-to iso) as

G = (idn ⊗ ω) ◦D

where ω is a wiring and D is discrete. Further every discrete D may be factored
uniquely (up-to iso) as

D = α⊗ ((P0 ⊗ · · · ⊗ Pn−1) ◦ π)

where α is a renaming, each Pi prime and discrete, and π is a permutation.
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2.2 Sortings

As already stated, when one is adopting the bigraphical framework for defining
algebraic models or programming languages, it turns out that such framework
is too general and one has to discipline it with some constraints to fit precisely
the problem at hand.

To this end, general and powerful techniques, named sortings, have been
developed by Debois and coauthors in [3].

Definition 2.5 (Sortings). A sorting of a category C is a functor F : X → C,
that is faithful and surjective on objects. We call X sorted category.

Intuitively, a sorting functor F defines X by refining the category C. The ob-
jects (i.e., interfaces) of X carry more information than the original ones, thus
morphism (i.e., system) composition turns out to be finer-grained. This yields
back a category X where morphisms are more informative than those in C in
the sense that, some compositions in C no longer hold in X.

Due to the very general nature of sorting refinements needed by each partic-
ular application, it could be tricky to construct a sorting directly by hand using
the definition above. To avoid this, it is convenient to use predicates to charac-
terize unwanted systems by means of predicates which describes their structure.
When the set of ill-systems is defined, it is easy to characterize the good-ones: a
systems is in the sorted category if and only if it does not “contain” an ill-one
as subsystem. Formally,

Definition 2.6 (Decomposable predicate). A predicate P on morphisms of
a category C is decomposable if and only if it reflects identities and P (f ◦ g)
implies P (f) and P (g).

Notice that every decomposable predicate holds on identities.
Notably, the class of decomposable predicates can be characterize as those

morphisms that disallow factorization by a given set of morphisms.

Theorem 2.7 (Factorization, [3, Proposition 14]). Let C be a category. A
predicate P on morphisms of a category C is decomposable if and only if there
exists a set of C-morphisms Φ such that P (f) holds if and only if for any g, ψ, h
f = g ◦ ψ ◦ h implies ψ /∈ Φ.

Interestingly, the Factorization Theorem 2.7 defines a connection with BiLog [6],
a spatial logic for bigraphs. Indeed, given a BiLog formula φ which characterizes
a set Φ of unwanted bigraphs, the formula (¬φ)∀◦ defines all the bigraphs G such
that G = H ◦ψ ◦F implies ψ /∈ Φ. Obviously, all bigraphs satisfying the formula
above are decomposable.

In [3] it is also given a method to systematically construct a well-behaved
sorting for any decomposable predicate.

Definition 2.8 (Predicate Sorting). Let C be a category, and let P be a
decomposable predicate on the morphisms of C. The predicate sorting SP :
X → C is defined as follows. The category X has pairs (X,Y ) as objects, where,
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LεM =
str

LaabM =

str
a

a

b

Fig. 3. Endcoding of strings in Big

for some object C of C, X is a set of C-morphisms with codomain C and Y is
a set of C-morphisms with domain C, subject to the following conditions.

idC ∈ X
idC ∈ Y

f ∈ X ∪ Y ⇒ P (f)
f ∈ X, g ∈ Y ⇒ P (g ◦ f)

g ◦ f ∈ X ⇒ g ∈ X
g ◦ f ∈ Y ⇒ f ∈ Y

There is a morphism f : (X,Y ) → (U, V ) whenever the following holds.

f ∈ Y ∩ U x ∈ X ⇒ f ◦ x ∈ U v ∈ V ⇒ v ◦ f ∈ Y

For such a construction, the following result holds:

Proposition 2.9. Let P be a decomposable predicate on C. The image of the
predicate sorting SP is precisely the set of morphisms satisfying P .

Clearly, all the above definitions and results apply naturally to the bigraph
category and they have been extensively used in literature to get rid of bigraphs
that are meaningless for the application at hand. That is, most sortings exists
solely to impose a predicate on the morphisms in the category of (pure) bigraphs.

3 Undecidability of bigraphical sortings

In this section we focus on some undecidability issues about predicate sortings,
and in particular for the case of bigraphical sortings.

What we are really interested in is not the decidability of the construction
of a sorted category, but of the problem of checking if a given morphism f
from the base category has a pre-image in the sorted category. Fortunately,
when a predicate sorting SP : X → C is used the existence of such pre-image
x = SP (f) in the sorted category X is garanteed whenever P (f) holds, by means
of Proposition 2.9. Decidability cannot be assumed nor for general predicate P
neither for decomposable predicates over bigraphs.

Proposition 3.1. Not all decomposable predicates over Big are decidable.

Proof. The proof takes advantage of the characterization of a decomposable
predicate given in Theorem 2.7. Let K = {str, a, b} a bigraphical signature of
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three 0-arity controls. Any word w ∈ {a, b}∗ in the two letters alphabet {a, b} can
be represented in Big(K) by means of the two encodings L·M : {a, b}∗ → Big(K)
and J·K : {a, b}∗ → Big(K) defined as follows (see also Fig. 3):

LwM = str ◦ JwK JεK = 1 Ja · wK = a ◦ JwK Jb · wK = b ◦ JwK .

Let L ⊆ {a, b}∗ be a language, and ΦL = {LwM | w ∈ L} the set of morphisms
that bigraphically represents L in Big(K). By the Factorization Theorem 2.7,
the set Φ induces a decomposable predicate

PL = {f morphism of Big(K) | ∀g, φ, h. f = g ◦ φ ◦ h⇒ φ /∈ ΦL} .

The problem of deciding PL(f) is reduced to check if f has no occurrences
of LwM ∈ ΦL, which amounts to verify w ∈ L. If the given language L is not
recursive, then the decomposable predicate is undecidable. ut

Theorem 3.2. Let SP : X → C be a predicate sorting over a decomposable
predicate P . The problem of checking if a given morphism f in C has a pre-
image x = SP (f) in the sorted category X is undecidable.

Proof. It follows immediately from Propositions 2.9 and 3.1. ut

As corollary, it arises that also the construction of a predicate sorted category
is not decidable, hence, more in general, the construction of a sorting.

Corollary 3.3. The construction of a sorting, in general, is not decidable.

Looking at the Definition 2.8, it is obvious that an exhaustive construction
of the a predicate sorting category is unfeasible (one must quantifies on all mor-
phisms to construct an object of the sorted category). Instead, given a decompos-
able predicate P , it results more convenient to look at the problem of checking
if a given morphism has a pre-image in the sorted category. The key idea behind
this approach is to simulate the existence of the sorted category, checking that
each morphism that comes into play belongs to the sorted category. This can be
done simply checking that the morphism satisfies the decomposable predicate P
(note that this must be done only when a composition is performed).

Such approach is certainly feasible, but we want to do more: a general algo-
rithm that works independently from the predicate P , in the sense that it has
no need to be redeveloped every time if the predicate P changes. To this end,
the next section introduces a decidable sub-class of predicate sortings, named
match predicate sortings.

4 Match predicate sortings

In this section, we introduce a characterization of a decidable class of bigraphical
sortings, which turns out to be a proper subclass of the predicate sortings.

The main idea behind our characterization is based on the fact that there is
always a possible decomposition of a bigraph G in elementary bigraphs, and such
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d
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(redex)

a′

(agent)

Fig. 4. A valid matching sentence.

decomposition is finite and computable. Indeed, every bigraph can be expressed
uniquely in discrete normal form. Therefore checking if there is an occurrence
of an ill-formed bigraph inside another one can be seen as trying to match the
first into the latter. Such observation suggests that the problem at issue can be
reduce to the matching of bigraphs: a bigraph G has a match into a bigraph H
if and only if H = F ◦ (G⊗ idX) ◦ E for some name set X and bigraphs F,E.

Definition 4.1 (Matching Sentence). A matching sentence is a 7-tuple re-
lation among wirings and bigraphs, written ωa, ωR, ωC ` a,R ↪→ C, d, where
ωa, ωR, ωC are wirings, and a,R,C, d are discrete bigraphs and a, d are ground.

A matching sentence ωa, ωR, ωC ` a,R ↪→ C, d is valid if and only if

(id⊗ ωa) ◦ a = (id⊗ ωC) ◦ (C ⊗ id) ◦ (id⊗ (id⊗ ωR) ◦R) ◦ d .

A schematic example of a valid matching sentence is shown in Fig. 4.
The matching of bigraph is decidable as shown in [1], where an effective

algorithm has been proposed and studied. It is based on the Definition 4.1 of
matching sentence and on a set of inference rules which operates on those sen-
tences. Intuitively, the algorithm as first step transforms the agent and the redex
in their respective discrete normal forms. Then it inductively decomposes and
simplifies the structure of their components by picking a rule from the system.
At each step, the parts of the agent which do not belong to the redex are “added”
to the parts representing the context in the matching sentence. The algorithm
terminates when a match is found, i.e., the redex is completely consumed by
matching all its parts inside the agent. The remaining part of the agent are the
parameters of the redex. Due to lack of space, we refer to [1] for more details.

Notice that the agent is forced to be ground (i.e., without sites, and inner
names) in the previous algorithm. But it is not a limitation for our purpose,
indeed we are interested only on the existence of a match. So, we can turn a non-
ground bigraph into a ground one by filling the sites with empty (i.e., barren)
roots and the inner names with idle names. More importantly, if a match exists
into the ground bigraph then it must exist also into the non-ground one.

This scenario suggests the definition of a family of decomposable predicates
based on the match concept.
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Definition 4.2 (Match predicate). Let R be a recursive set of redexes. We
say that PR is a match predicate with respect to the set R, if for every (ground)
bigraph g, PR(g) holds if and only if every R ∈ R does not have a match into g,
that is ωg, ωR, ωC ` g,R ↪→ C, d is not a valid matching sentence.

We avoid to write the subscript R, when can be understood from the context.
The following proposition holds straightforwardly.

Proposition 4.3. Any match predicate is a decomposable predicate.

Proof. Let R be a set of redexes and P its match predicate. Now, suppose by
absurdity that P is not decomposable. So there exist two bigraphs such that
P (G ◦H) holds but one between P (G) or P (H) does not. Suppose P (H) does
not hold (the other case is analogous), this means that there exist C, d such that
H = (id ⊗ C) ◦ (id ⊗ R) ◦ d is a valid matching sentence for some R ∈ R. But
this means that G◦H = (G◦ (id⊗C))◦ (id⊗R)◦d is a valid matching sentence
for G ◦H with respect to R, but this is absurd by hypothesis. ut

Hence, the class of match predicates is a proper subclass of decomposable pred-
icates, and it is decidable by means of the matching algorithm.

Proposition 4.4 (Decidability). Any match predicate is decidable.

Proof. Direct consequence of the decidability result for the bigraphical matching
problem [8].

Moreover, those results suggest a way to specialize the Factorization The-
orem 2.7 for decomposable predicates in the following sense: given a recur-
sive set of bigraphs M , the set Φ of unwanted bigraphs is defined from M as
Φ = {m⊗ idX | m ∈M ∧X is a set of names}.

Theorem 4.5 (Factorization). A predicate P is a match predicate if and only
if there exists a recursive set of morphisms M such that P (f) holds if and only if
for any g, ψ, h morphisms and any set of names X we have f = g ◦ (ψ⊗ idX)◦h
implies ψ /∈M .

Proof. Direct consequence of Proposition 4.3 and Theorem 2.7. ut

In this way, deciding if a bigraphG is well-sorted is reduced to decide if nom ∈M
has a match into G. Moreover, we can use the Proposition 4.3 in combination
with the Definition 2.8 to compute the bigraphical sorted category. We call those
class of sortings match predicate sortings.

There are some interesting observations to consider. To define a decidable
sorting we must enforce that the set M is recursive, indeed such requirement is
essential to be able to decide if an element belongs or not to some set. Whilst,
to guarantee the meaningfulness of the sorting, the set M must contain no iden-
tities, otherwise (almost) all bigraphs are sorted out. Finally, our sortings work
up-to tensor product with identities, i.e., the unwanted bigraphical structures
are “homset independent”, indeed a match can be found in any context, so we
cannot force the decomposition to work only with some particular interfaces.
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Another interesting fact, due to Theorem 4.5 and Proposition 4.3, is that
there is again a connection with BiLog [6] as for predicate sortings. But in our
case, the formulae must encode the fact that the redexes are matched up-to
tensoring with an identity.

5 Sortings in literature and their decidability

In order to investigate the expressive power of our sortings, here we analyze
some of the sortings already introduced in literature. Specifically, we focus our
attention on some predicate sortings shown in [7, Table 6.1], to be replaceable
by a predicate sorting. In particular, we consider homomorphic sortings [13]
and the bigraph’s variant known as local bigraphs [14]. Here we show that each
decomposable predicate used in [7] can be characterized as a match predicate of
Definition 4.2, then the construction of the sorted category remains unchanged
because match predicates are decomposable by Proposition 4.3.

5.1 Homomorphic sortings

Firstly, we recall the definition of homomorphic sortings given in [13] with the
variants of [7]1. To do so, we start giving the definition of place-sorted bigraph.

Definition 5.1 (Place-sorted interface). Let Θ be a set of sorts. An interface
I = 〈m,X〉 is Θ-place-sorted if it is enriched by ascribing a sort to each place
i ∈ m. If I is place-sorted, we denote its underlying unsorted interface by U(I).

We denote by Big(K, Θ) the (s-)category in which the objects are place-sorted
interfaces, and each morphism G : I → J is a bigraph G : U(I) → U(J).

Such definition refines only the objects of the bigraph category, the next is
cutting down some morphisms (i.e., bigraphs).

Definition 5.2 (Place-sorting). A place-sorting is a triple Σ = {K, Θ, Φ},
where Φ is a condition on the place graph of Θ-sorted bigraphs over K. The
condition Φ must be satisfied by the identity and preserved by composition and
tensor product.

A bigraph in Big(K, Θ) is Σ-place-sorted if it satisfies Φ. The Σ-sorted bi-
graphs from a sub-(s-)category of Big(K, Θ) denoted by Big(Σ).

Notably, Milner shows [13, Proposition 10.3] that U can be extended to a functor
U : Big(Σ) → Big(K, Θ) which is faithful and surjective on objects, in other
words it is a sorting by Definition 2.5.

Due to the very general nature of place-sorting, Milner defines a particular
class of such sortings, named homomorphic sortings.

1 The variants are quite technical and do not change the resulting sorted categories.
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Definition 5.3. A place-sorting Σ = {K, Θ, Φ} is an homomorphic sorting if
the condition Φ assigns a sort θ ∈ Θ to each control in K by means of a surjective
function sort : K → Θ and it also defines a parent map prntΘ : Θ → Θ over
sorts. (We impose that Θ has a least two elements2.)

In a bigraph G, via its control map, the sort assignment to K determines a
sort for each node. The Φ requires that, for each site or node w in G with sort θ:

1. if prntG(w) is a node then its sort is prntΘ(θ);
2. if prntG(w) is a root then its sort is θ.

Notice that homomorphic sortings capture many sortings proposed in literature,
such as the ones used in Jensen’s PhD Thesis [10] to encode some π-calculi [15].

In order to construct a predicate from a homomorphic sorting, it is sufficient
to restrict the condition of Φ to consider just 1. and dropping 2., indeed we can
focus only on constraining the internal components (i.e., nodes) of the bigraph.
The roots belong to the interfaces, and those are refined automatically by the
predicate sortings (see Definition 2.8).

So, the predicate constructed by Debois in [7] is the following.

Definition 5.4. Let Σ = {K, Θ, Φ} be a homomorphic sorting, and let prntΘ
be the parent maps on sorts defined by Φ. The predicate PΣ holds on a bigraph
G if and only if whenever the control of a node v in G has sort θ ∈ Θ and
w = prntG(v) is a node, then the control of w has sort prntΘ(θ).

On such definition it is not difficult to yield out a “negative” version of
the predicate by means of the Factorization Theorem 2.7: the set of unwanted
bigraphs Φ can be construct by complement the condition 1. This observation
also suggests a simple way of constructing a match predicate by means of our
Factorization Theorem 4.5.

Definition 5.5. Let Σ = {K, Θ, Φ} be a homomorphic sorting, and let prntΘ
be the parent maps on sorts defined by Φ. The match predicate P (MΣ) for Σ
can be defined on the set of bigraphs MΣ below and by using the Theorem 4.5.

MΣ , {K~x ◦H~y | K,H ∈ K ∧ prntΘ(sort(H)) 6= sort(K)} (1)

It is easy to prove that the meaning of the two predicates coincides, indeed if a
match exists condition 1. is violated, otherwise it does not hold.

It is important to notice for the decidability of the sorting, that the set MΣ

defined in the equation (1) is actually finite.
The following result follows directly from the above considerations.

Proposition 5.6. Homomorphic sortings correspond to match predicate sort-
ings over the predicate MΣ.

Proof. It follows immediately from the characterization given in [7, Section 6.3]
and by the fact that PΣ = MΣ . ut
2 Otherwise the homomorphic sorting sorts out no bigraph, hence it is useless.
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G : ({y0}, {y1}, {y2}) → ({z0}, {z1, z2})

Fig. 5. An example of a local bigraph.

5.2 Local bigraphs

In this section firstly we recall Milner’s local bigraphs [14] and then we discuss
how to use a match predicate sorting on (pure) bigraphs to catch local bigraphs.

Intuitively, a local bigraph is like a standard bigraph but it has names which
are deeply connected with placing, i.e., there is a precise scoping rule: every
linking must respect the nesting of nodes. An example of a local bigraph is
shown in Fig. 5.

Let K be a binding signature of controls, and ar : K → N × N be the arity
function. The arity pair (h, k) (often written as h → k) consists of the binding
arity h and the free arity k, indexing respectively the binding ports and the free
ports of a control.

Definition 5.7. A local interface is a list (X0, . . . , Xn−1), where n is the width
and Xis are disjoint sets of names. Xi represents the names located at i.

Definition 5.8. A local bigraph G : ( ~X) → (~Y ) is defined as a (pure) bigraph
Gu : 〈| ~X|,

⋃ ~X〉 → 〈|~Y |,
⋃ ~Y 〉 satisfying certain locality conditions.

Gu is defined much like as in Definition 2.2, the unique difference is in
the link map: let P =

∑
v∈V π1(ar(ctrl(v))) be the set of ports and let B =∑

v∈V π2(ar(ctrl(v))) be the set of bindings (associated to all nodes), the link
map is link : X ] P → E ]B ] Y .

The locality conditions are the following:

1. if a link is bound, then its inner names and ports must lie within the node
that binds it;

2. if a link is free, with outer name x, then x must be located in every region
that contains any inner name or port of the link.

Definition 5.9. The category Lbg(K) of local bigraphs over a signature K has
local interfaces as objects, and local bigraphs as morphisms.

Composition and tensor product are defined as for (pure) bigraphs.

In [7] it is given the predicate that follows, and it is proven that predicate
sortings can be replaced with the category of local bigraphs.

Definition 5.10 ([7, Definition 6.22]). Let Σ be a binding signature. Define
PΣ to be the predicate on the morphisms of Big(U(Σ)) given by PΣ(f) if and
only if in f
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“any port that is a peer of a binding port lies beneath that binding port”.

It is straightforward to prove that such predicate is decomposable, but we
want to characterize it as a matching predicate, that is giving a recursive set of
unwanted redex patterns.

Fortunately the predicate PΣ is very simple to falsify, indeed it is enough to
find a match of a redex with the following form:

w/{xi, yj} ◦ (K~x ‖ N~y) (2)

where the i-th port of a control K is a binding port, for some control K,N ∈ Σ.
Intuitively, if a bigraph has a match for a redex with the form in (2), that match
is a counterexample for PΣ (the binding port i of the K-node has as peer a port
j of another node that is not beneath the K-node).

Now we can define the binding match predicate.

Definition 5.11. Let Σ be a binding signature and let Rbind be the following
set of bigraphs:

Rbind = {w/{xi, yj} ◦ (K~x ‖ N~y) | K,M ∈ Σ and i is a binding port in K}

Define MΣ as the match predicate defined on the (recursive) set of redexes Rbind.

Proposition 5.12. The category of local bigraphs corresponds to the one ob-
tained by applying the match predicate sorting on MΣ over the morphisms of
Big.

Proof. It follows immediately from the characterization given in [7, Section 6.4]
and by the fact that PΣ = MΣ . PΣ ⊆ MΣ can be proven noticing that any
match of a redex from RΣ in a bigraph f in Big(U(Σ)) is a counterexample
for PΣ(f); whereas MΣ ⊆ PΣ follows immediately from the fact that RΣ has a
redex for any pair of controls in Σ, for any binding port. ut

6 Conclusion

In this paper, we have investigated about the decidability problem of bigraphi-
cal sortings. In particular, we have shown the undecidability of Debois’s predi-
cate sortings, then we have identified a proper sub-class of them, named match
sortings, which turns out to be decidable. For match sortings, we have pro-
posed a characterization that induces the definition of an algorithm to check if
a given morphism in the unsorted category has a pre-image into the sorted one,
which holds independently from the chosen predicate. The algorithm is natu-
rally based on the bigraphical matching problem, which has an effective solution
procedure [1].

Notably, our match sortings preserve many interesting properties of predicate
sortings, such as the possibility of describing unwanted bigraphs by means of
BiLog formulae. Moreover, we have shown that the match sortings are powerful
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enough to capture some important bigraphical sortings proposed in literature:
homomorphic sorting and the well-known bigraph’s variant of local bigraph.

As possible future work, we plan to investigate if other decidable classes
of sortings exist and if there are other (possibly) more efficient algorithms to
decide if a bigraph belongs to a sortings (remark that the matching problem for
bigraphs is NP-complete). Finally, another interesting developing could be the
analysis of the problem in a more general setting, not focusing only on bigraphs.
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Abstract. Introducing the concept of elements-based semantics, we in-
vestigate the concept of satisfaction within Institution Theory. Based
on the elements used to define the satisfaction relation the concept of
elements-based semantics allows us to model in a uniform way the two
concepts of quantifier and modality.
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When one has a closer look on how the satisfaction relation between formulae
and models is defined in temporal/modal logics and predicate logics, it clearly
appears that, in both cases, two steps are necessary in order to define the satis-
faction relation. Propositional logic is the only logic whose satisfaction relation
can be defined directly. But, for every other logic the validity of a given formula
cannot be checked directly once given the semantical structure. One must first
consider the elements of the semantical structure, i.e. the states/worlds or the
interpretations of variables, and define the satisfaction of a formula with respect
to these elements. Only then one can define the overall satisfaction of a given
formula in the semantical structure.

In this paper we introduce the notion of Elements-based Semantics that will
allow us to model these additional elements and investigate further the notion
of satisfaction within Institution Theory. We will first show how it is possible to
simulate the concept of interpretation of variables by simply playing tricks with
the syntax while strictly staying in the limits of Institution Theory. This gives
rise to the concept of Internal Elements-based Semantics (iEBS ) and will allow
us to build, from a given institution, the associated institution of open formulae.

But the concept of internal elements-based semantics is limited to semantics
based on interpretation of variables. Its scope does not include modal logics.
Taking inspiration on the concept of internal elements-based semantics, and in
order to capture temporal/modal logics, we then generalize it to the concept
of (External) Elements-based Semantics (EBS), introducing the framework of
EBS-Institution. This framework simply refines the institutional framework by
considering a certain set of states associated with every model. This makes the
satisfaction relation more explicit than in Institution Theory, thus allowing a
deeper investigation of its definition while remaining at a very abstract level.

In order to model quantifiers and modalities we finally extend the EBS-
Institutions with a notion of abstract syntax, introducing the κEBS-Institutions.
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The association of both concepts of abstract syntax and elements-based seman-
tics emphasize the similarities between the concepts of quantifiers and modalities.
We believe this will allow a thorough study of both concepts and opens the door
to a new approach to logic combination.

In the sequel proofs have been omitted for lack of space.

1 Institution

Institution Theory (cf. [GB92]) was introduced at the beginning of the 80’s by
J. Goguen and R. Burstall following their work on the semantics of the language
Clear (cf. [BG80]). Aiming at doing “as much computing science as possible”
independently of what the underlying logic may be, they achieve to characterize
in a generic way the indispensable concepts for a theory to be an adequate
framework for the conception of information systems.

1.1 Definition

An institution makes a distinction between signatures and sentences inside theo-
ries. Without giving any details about the structure of models or the structure of
sentences, an institution focuses on the relationship between syntax and seman-
tics, i.e. between sets of sentences and categories of models, in an abstract way.
In a certain way an institution is an abstract logic laking all the inference mech-
anisms but that allows to formally capture the imprecise concept of a logical
system from a model-theoretic point of view.

Definition 1 (Institution). An institution is a 4-tuple (Sig , Sen ,Mod , |=) such
that:

– Sig is a category, objects of which are called signatures;
– Sen : Sig → Set is a functor that associates every signature Σ ∈ |Sig | with

the set Sen (Σ) ∈ |Set | of all sentences built over Σ. Elements in Sen (Σ) are
called Σ-sentences;

– Mod : Sig → Cat op is a functor that associates every signature Σ ∈ |Sig | with
the category Mod (Σ) ∈ |Cat | of models over Σ. Objects in Mod (Σ) are called
Σ-models;

– |= is a family of binary relations (|=Σ)Σ∈|Sig | such that for every signature
Σ ∈ |Sig |, |=Σ⊆ |Mod (Σ)|×Sen (Σ) is the satisfaction relation of Σ-sentences
in Σ-models. We shall write M |=Σ ϕ to indicate that the Σ-sentence ϕ ∈
Sen (Σ) holds in the Σ-model M.

Moreover, for every signature morphism σ : Σ → Σ′, every Σ′-model M′ ∈
|Mod (Σ′)| and every Σ-sentence ϕ ∈ Sen (Σ), we have:

M′ |=Σ′ Sen (σ)(ϕ) ⇔ Mod (σ)(M′) |=Σ ϕ (1)

The above formula is called satisfaction condition.

Notation 11 We will note M 2Σ ϕ if M |=Σ ϕ is false.
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1.2 Examples

Logic deals with two main features: quantification and modality. This gives rise
to four different cases: (i) a unique possible world and no quantification (PL);
(ii) multiple possible worlds but no quantification (MPL); (iii) a unique possible
world with quantification (FOL); (iv) multiple possible worlds and quantification
(MFOL).

Example 1 (Propositional Logic (PL)). The institution of Propositional Logic is
defined as follows:

– Sig
PL

is the category Set of sets and functions between them (called mor-
phisms). We call propositional signatures any object in Sig

PL
. An element of

a signature Σ ∈ |Sig
PL
| is called a propositional variable;

– Sen PL : Sig
PL

→ Set is the functor that associates every signature Σ ∈ |Sig
PL
|

with the set Sen PL(Σ) ∈ |Set | of propositional Σ-sentences, i.e. Sen PL(Σ) con-
tainsΣ and is closed under negation (¬) and disjunction (∨). It lifts signature
morphisms to the level of sets of sentences;

– Mod PL : Sig
PL

→ Cat op is the functor that associates every signature Σ ∈
|Sig

PL
| with the category Mod PL(Σ) ∈ |Cat | of Σ-valuations and functions

between them. Given a signature morphism σ ∈ Sig
PL

(Σ,Σ′), the σ-reduct
Mod PL(σ)(v′) ∈ |Mod PL(Σ)| of a Σ′-valuation v′ ∈ |Mod PL(Σ

′)| is the Σ-
valuation v = v′ ◦ σ;

– |=PL= (|=PL

Σ )Σ∈|Sig
PL

| is the family of binary relations such that for every
signature Σ ∈ |Sig

PL
|, the relation |=PL

Σ⊆ |Mod PL(Σ)| × Sen PL(Σ) is defined in
the following way (where v ∈ |Mod PL(Σ)|):
• ∀p ∈ Σ, v |=PL

Σ p iff v(p) = 1,
• ∀ϕ ∈ Sen PL(Σ), v |=PL

Σ ¬ϕ iff v 2
PL

Σ ϕ,
• ∀ϕ, ψ ∈ Sen PL(Σ), v |=PL

Σ ϕ ∨ ψ iff v |=PL

Σ ϕ ou v |=PL

Σ ψ.

Example 2 (Modal Propositional Logic (MPL)). The institution of Modal Propo-
sitional Logic is defined as follows:1

– Sig
MPL

is the category Sig
PL

of propositional signatures;
– Sen MPL : Sig

MPL
→ Set is the functor that associates every signature Σ ∈

|Sig
MPL

| with the set Sen MPL(Σ) ∈ |Set | of modal propositional Σ-sentences,
i.e. Sen MPL(Σ) contains the signature Σ and is closed under negation, dis-
junction and the modality �. It lifts signature morphisms to the level of sets
of sentences;

– Mod MPL : Sig
MPL

→ Cat op is the functor that associates every signature Σ ∈
|Sig

MPL
| with the category Mod MPL(Σ) ∈ |Cat | of Kripke Σ-models, i.e. the

category whose objects are pairs (E,R) where E is a non-empty set of states
and R ⊆ E × E is a binary relation over E called accessibility relation. For

1 We do not focus our attention at a specific modal logic. What we give here is a
very general presentation of modal and temporal logics. These logics may differ in
many different ways except they all consider a modality (or a temporal operator) as
a connective.
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every model (E,R) a mapping v : E ×Σ → {0, 1} is defined and associates
every pair (state,propositional variable) with a truth value. Given a
signature morphism σ ∈ Sig

MPL
(Σ,Σ′), the σ-reduct Mod MPL(σ)((E′,R′) ∈

|Mod MPL(Σ)| of a Σ′-model (E′,R′) ∈ |Mod MPL(Σ
′)| is the Kripke Σ-model

(E,R) such that E = E′ and:
• The accessibility relation is preserved, i.e. : ∀(η′1, η

′
2) ∈ E′ × E′,

η′1R
′η′2 ⇒ Mod MPL(σ)(η′1)RMod MPL(σ)(η′2)

• For every propositional variable p ∈ Σ and every state η ∈ E, we have:

v(p, η) = v
′(σ(p), η)

– (|=MPL

Σ )Σ∈|Sig
MPL

| is the family of binary relations such that for every sig-
nature Σ ∈ |Sig

MPL
|, every Σ-sentence ϕ ∈ Sen MPL(Σ) and every Σ-model

(E,R) ∈ |Mod MPL(Σ)|, (E,R) |=MPL

Σ ϕ if and only if for every η ∈ E we have
(E,R) |=MPL

Σ,η ϕ, where the relation (E,R) |=MPL

Σ,η⊆ Sen MPL(Σ) is defined in the
following way for every state η ∈ E:
• ∀p ∈ Σ, (E,R) |=MPL

Σ,η p iff v(η, p) = 1,
• ∀ϕ ∈ Sen MPL(Σ), (E,R) |=MPL

Σ,η ¬ϕ iff (E,R) 2
MPL

Σ,η ϕ,
• ∀ϕ ∈ Sen MPL(Σ), (E,R) |=MPL

Σ,η �ϕ iff for every η′ ∈ E such that ηRη′, we
have (E,R) |=MPL

Σ,η′ ϕ,
• ∀ϕ, ψ ∈ Sen MPL(Σ), (E,R) |=MPL

Σ,η ϕ∨ψ iff (E,R) |=MPL

Σ,η ϕ or (E,R) |=MPL

Σ,η ψ.

Example 3 (First Order Logic). The institution of First Order Logic is defined
as follows:

– Sig
FOL

is the category of unsorted first order signatures, i.e. of pairs (F ,R)
where F = (Fn)n∈IN is a family of sets of function signs and R = (Rn)n∈IN is
a family of sets of relation signs.2 First order signature morphisms preserve
both the structure of the pair (F ,R) and the arities;

– Sen FOL : Sig
FOL

→ Set is the functor that associates every signature Σ ∈
|Sig

FOL
| with the set Sen FOL(Σ) ∈ |Set | of the unsorted first order Σ-

sentences,i.e. Sen FOL(Σ) contains the set of atomic Σ-sentences Atom Σ
3 and

is closed under negation, disjunction and the universal quantifier (∀). It lifts
signature morphisms to the level of sets of sentences;

– Mod FOL : Sig
FOL

→ Cat op is the functor that associates every signature
(F ,R) ∈ |Sig

FOL
| with the category Mod FOL((F ,R)) ∈ |Cat | of first order

(F ,R)-structures M, i.e. carrier sets M ∈ |Set | equipped with a func-
tion fM : Mn → M for every function sign f ∈ Fn and a relation
rM ⊆ Mn for every relation sign r ∈ Rn. Given a signature morphism
σ ∈ Sig

FOL
(Σ,Σ′), the σ-reduct Mod FOL(σ)(M′) ∈ |Mod nomFOL(Σ)| of a Σ′-

structure M′ ∈ |Mod FOL(Σ
′)| is defined as follows:

• Mod FOL(σ)(M ′) = M ′,

2 Both function signs and relation signs are equipped with an arity n ∈ IN.
3 Atomic Σ-sentences are of the form r(t1, . . . , tn) where r ∈ Rn is a relation in Rn

and t1, . . . , tn ∈ TΣ(X ) are Σ-terms (X is a set of unsorted first order variables).
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• fMod FOL(σ)(M′) = σF (f)
M′

for every function sign f ∈ F ,

• rMod FOL(σ)(M′) = σR(r)
M′

for every relation sign r ∈ R.
– (|=FOL

Σ )Σ∈|Sig
FOL

| is the family of binary relations such that for every signature
Σ ∈ |Sig

FOL
|, every Σ-sentence ϕ ∈ Sen FOL(Σ) and every Σ-model M ∈

|Mod FOL(Σ)|, M |=FOL

Σ ϕ if and only if for every interpretation ν ∈ MX we
have M |=FOL

Σ,ν ϕ, where the relation M |=FOL

Σ,ν⊆ Sen FOL(Σ) is defined in the

following way for every interpretation ν ∈MX :
• ∀r ∈ Rn, ∀t1, . . . , tn ∈ TΣ(X ), M |=FOL

Σ,ν r(t1, . . . , tn) iff

(ν(t1), . . . , ν(tn)) ∈ rM

• ∀ϕ ∈ Sen FOL(Σ), M |=FOL

Σ,ν ¬ϕ iff M 2
FOL

Σ,ν ϕ,
• ∀x ∈ X , ∀ϕ ∈ Sen FOL(Σ), M |=FOL

Σ,ν (∀x)ϕ iff M |=FOL

Σ,ν′ ϕ for every in-
terpretation ν′ such that ν′(y) = ν(y) for every variable y ∈ X , except
eventually x,

• ∀ϕ, ψ ∈ Sen FOL(Σ), M |=FOL

Σ,ν ϕ ∨ ψ iff M |=FOL

Σ,ν ϕ or M |=FOL

Σ,ν ψ

Example 4 (Modal First Order Logic (MFOL)). The institution of Modal First
Order Logic is defined as follows:

– Sig
MFOL

= Sig
FOL

is the category of first order signatures;
– Sen MFOL : Sig

MFOL
→ Set is the functor that associates every signature Σ ∈

|Sig
MFOL

| with the set Sen MFOL(Σ) ∈ |Set | of modal first order Σ-sentences,
i.e. Sen MFOL contains Atom Σ is closed under negation, disjonction, universal
quantification and the modality �. It lifts signature morphisms to the level
of sets of sentences;

– Mod MFOL : Sig op
MFOL

→ Cat is the functor that associates every signature
(F ,R) ∈ |Sig

MFOL
| with the category of Kripke (F ,R)-models (E,R) where E

is a set of states, each one of them being a first order (F ,R)-structure,
and R ⊆ E × E is a binary relation over the states called accessibility
relation. Given a signature morphism σ ∈ Sig

MFOL
(Σ,Σ′) and a Krikpe

(F ′,R′)-model (E′,R′), the σ-reduct of (E′,R′) is the Kripke (F ,R)-model
Mod MFOL(σ)((E′,R′)) such that Mod MFOL(σ)(E′) = E

′ and:
• The accessibility relation is preserved,
• For every state M′ ∈ Mod MFOL(σ)(E′), Mod MFOL(σ)(M′) is the first order

(F ,R)-structure Mod MFOL(σ)(M′) such that:
∗ Mod MFOL(σ)(M ′) = M ′,

∗ fMod MFOL(σ)(M′) = σF (f)M
′

for every function sign f ∈ F ,

∗ rMod MFOL(σ)(M′) = σR(r)M
′

for every relation sign r ∈ R.
– |=MFOL= (|=MFOL

Σ )Σ∈|Sig
MFOL

| is the family of binary relations such that for every
signature Σ ∈ |Sig

MFOL
|, every Σ-sentence ϕ ∈ Sen MFOL(Σ) and every Σ-model

(E,R) ∈ |Mod MFOL(Σ)|, (E,R) |=MFOL

Σ ϕ if and only if for every state M ∈ E

we have (E,R) |=MFOL

Σ,M ϕ where (E,R) |=MFOL

Σ,M⊆ Sen MFOL(Σ) is defined, for
evey state M ∈ E as (E,R) |=MFOL

Σ,M ϕ if and only if for every interpretation

ν ∈MX we have M |=MFOL

Σ,M,ν ϕ, where the relation M |=MFOL

Σ,ν ⊆ Sen MFOL(Σ) is

defined in the following way for every interpretation ν ∈MX :
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• ∀r ∈ R, ∀t1, . . . , tn ∈ TΣ(X ), (E,R) |=MFOL

Σ,M,ν r(t1, . . . , tn) iff

(ν(t1), . . . , ν(tn)) ∈ rM

• ∀ϕ ∈ Sen MFOL(Σ), (E,R) |=MFOL

Σ,M,ν ¬ϕ iff (E,R) 2
MFOL

Σ,M,ν ϕ,

• ∀x ∈ X , ∀ϕ ∈ Sen MFOL(Σ), (E,R) |=MFOL

Σ,M,ν (∀x)ϕ iff (E,R) |=MFOL

Σ,M,ν′ ϕ for
every interpretation ν′ such that ν′(y) = ν(y) for every variable y ∈ X ,
except maybe for x,

• ∀ϕ ∈ Sen MFOL(Σ), (E,R) |=MFOL

Σ,M,ν �ϕ iff (E,R) 2
MFOL

Σ,M′,ν ϕ for every state
M′ ∈ E such that MRM′,

• ∀ϕ, ψ ∈ Sen MFOL(Σ), (E,R) |=MFOL

Σ,M,ν ϕ ∨ ψ iff (E,R) |=MFOL

Σ,M,ν ϕ or
(E,R) |=MFOL

Σ,M,ν ψ

2 Elements-Based Semantics

It is clear from Examples 3 and Example 4 that the satisfaction relation between
formulae and models of a given first order signature is first defined with respect to
the notion of interpretation of the variables. This is, in fact, a general case when
dealing with logics whose semantics relies upon an interpretation of variables.

We will first show how it is possible by a simple trick on the syntax to simulate
this concept of interpretation of variables while strictly staying in the limit of
Institution Theory. This will then allow us to build, from a given institution, the
associated institution of open formulae. We will then generalize the approach,
introducing the framework of EBS-Institutions, in order to capture satisfaction
based on states as well.

2.1 Internal Elements-Based Semantics of an Institution

Intuitively, the concept of formula satisfaction by a model of the same given
signature is based on the concept of ”internal satisfaction” of open formulae
which is parametrized by the abstract valuation of the variables, i.e. a value is
given to the variables. The formula satisfaction is then layered by this concept of
internal satisfaction. In order to model this layered semantics we now introduce
the concept of internal elements-based semantics (iEBS ).

Definition 2 (Internal Elements-Based Semantics). Let I =
(Sig , Sen ,Mod , |=) be an institution. An internal elements-based semantics

of I is a 4-tuple I ebs = (Sig ebs , Sen ebs ,Mod ebs , JKebs ) such that:

– Sig ebs is a category such that:

• objects are a certain class of signature morphisms χ : Σ → Σ′ of I;

• morphisms σ : (χ1 : Σ1 → Σ′
1) → (χ2 : Σ2 → Σ′

2) are ordered pairs of
signature morphisms (σ1 : Σ1 → Σ2, σ

′
1 : Σ′

1 → Σ′
2) of I such that the
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following diagram is a weak amalgamation diagram.4

Σ1
χ1

−−−−→ Σ′
1

σ1





y





y

σ′

1

Σ2 −−−−→
χ2

Σ′
2

– Sen ebs : Sig ebs → Set is a functor that associates every signature χ : Σ → Σ′ ∈
|Sig ebs | with the set Sen (Σ′) ∈ |Set | of Σ′-sentences of I;

– Mod ebs : Sig ebs → Cat op is a functor that associates every χ : Σ → Σ′ ∈ |Sig ebs |
with the category Mod (Σ) ∈ |Cat | of Σ-models of I;

– JKebs = (JKebsχ )χ∈|Sig ebs | is a family of functors such that for every signature

χ ∈ |Sig ebs |, the functor JKebsχ : Mod ebs (χ) → Set associates every model M ∈

|Mod ebs (χ)| with the set JMKebsχ = {M′ ∈ |Mod (Σ′)|/Mod (χ)(M′) = M} of
states of M.

For every χ-model M ∈ |Mod ebs (χ)| and every χ-sentence ϕ′ ∈ Sen ebs (χ), one
defines the satisfaction of ϕ′ by M at state M′ ∈ JMKebsχ in the following way:

M |=χ,M′ ϕ′ ⇔ M′ |=Σ′ ϕ′

Finally, a χ-model M ∈ |Mod ebs (χ)| satisfies a χ-sentence ϕ′ ∈ Sen ebs (χ), denoted
M |=χ ϕ

′, if and only if for every state M′ ∈ JMKebsχ one has M |=χ,M′ ϕ′.

Intuitively, the above definition indicates that the concept of variable can be
encoded syntactically into the signatures. Indeed, the domain of interpretation
of variables (no matter what their nature is) is the same as the domain of in-
terpretation of the elements of the signatures. Ultimately, a variable stands for
an element of the signature, only this element is not specified (apart from its
nature). So a signature with variables is nothing but a signature with distin-
guished (and possibly empty) subsets of sort signs, function signs and relation
signs. This clearly defines a specific class of signature morphisms (the objects of
the category Sig ebs ) depending on the kind of variables one wants to consider.

Example 5. The internal elements-based semantics of FOL is defined in the
following way:

– Sig ebs
FOL

is the category objects of which are the signature morphisms χ :
(F ,R) → (F ∪X ,R) where X is the set of variable associated with (F ,R);5

– Sen ebs
FOL

: Sig ebs
FOL

→ Set is the functor that associates every signature χ :
(F ,R) → (F ∪ X ,R) with the set of first order (F ∪ X ,R)-formulae (both
closed and open);

4 This means that for every Σ1-model M1 ∈ |Mod (Σ1)| and every Σ2-model M2 ∈
|Mod (Σ2)| such that Mod (σ1)(M1) = Mod (σ2)(M2), there exists a Σ′-model M′ ∈
|Mod (Σ′)| such that Mod (σ′

1)(M
′) = M1 and Mod (σ′

2)(M
′) = M2.

5 This is the class of representable morphisms introduced in [Dia05].
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– Mod ebs
FOL

: Sig ebs FOL → Cat op is the functor that associates every signature
χ : (F ,R) → (F ∪ X ,R) with the category of (F ,R)-models;

– For every signature χ : (F ,R) → (F ∪ X ,R) and every (F ,R)-model,
JMKχ = MX , i.e. the set of interpretation of variables ν : X → M .

Thus the states associated with a given model are the interpretations of variables
in this model. Indeed, an interpretation of first order variables is nothing but a
value m ∈M assigned to every variable x ∈ X . One can see a mapping from X
to M as a (F ∪ X ,R)-extension of M.

Satisfaction in purely modal logics (i.e. based on propositional logic) does
only depends on the states. These states being implicit, it is not possible to define
an internal elements-based semantics for modal propositional logic. Indeed, in
order to do so one would have to add to the signatures elements to represent the
states and define a distinguished class of signature morphisms.

What about modal logics that are not defined as an extension of propositional
logic such as modal first order logic? Having a closer look at it, it appears that
there are in fact two layers in the definition of the satisfaction relation, one of
them being a first order one (cf. Ex. 4). So, this first order layer can be captured
by the concept of internal elements-based semantics. One then talks of partial
internal elements-based semantics of modal logic with variables. This elements-
based semantics is only visible to the one who is interested on how satisfaction
is done inside every state of a given model. For lack of space we do not show
this construction here.

Remark 1. Propositional Logic is a neutral element of the internal elements-
based semantics construction. Although its semantics relies on a certain notion
of interpretation of variables (the valuation of propositional variables), the satis-
faction relation is defined in one step, i.e. no semantical structure is pre-supposed
in which several different interpretations of the variables can be given. In fact,
a semantical structure is a valuation of propositional variables.

The interest of the concept of internal elements-based semantics is that it
allows to take into account the concept of open formula within institution theory.
As free variables and open formulae are two very important concepts of Classical
Model Theory a certain number of constructions and results relying on these two
concepts could be generalized at the level of Institution Theory using internal
elements-based semantics.

Proposition 1. The internal elements-based semantics I ebs of an institution I
is itself an institution.

2.2 EBS-Institutions

Internal elements-based semantics is nothing but an encoding in the syntax of
those elements used to define the satisfaction relation. But satisfaction in tem-
poral/modal logics is based on the concept of state/world. This is a semantical
concept and it cannot be encoded in the syntax without altering it.
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In order to solve this problem, the framework of EBS-institution has been
introduced in [Bar05].6 This framework allows to model in a very abstract way
the elements used to define formula satisfaction, i.e. independently of their na-
ture. It refines the institutional framework by considering a certain set of states
associated with every model. No specific information on the nature of these states
is provided. Only the truth values of formulae in these states are defined. Satis-
faction is then defined in a way much similar to satisfaction in Kripke semantics.

Definition 3 (EBS pre-Institution). A EBS pre-institution Iebs is a 4-
tuple (Sig , Sen ,Mod , JK) such that:

– The 3-tuple (Sig , Sen ,Mod ) is defined as in the institutional case (cf. Def. 1);
– JK = (JKΣ)Σ∈|Sig | is a family of functors indexed by |Sig | such that for every

signature Σ ∈ |Sig |, JKΣ : Mod (Σ) → Set associates every Σ-model M ∈
|Mod (Σ)| with a set of states.

For every signature Σ ∈ |Sig |, every Σ-model M ∈ |Mod (Σ)| and every Σ-
sentence ϕ ∈ Sen (Σ), one defines the satisfaction of ϕ by M in the following
way:

M |=Σ ϕ⇐⇒ ∀η ∈ JMKΣ , M |=Σ,η ϕ

where M |=Σ,η ⊆ Sen (Σ) is a unary relation defined over Sen (Σ).

Example 6 (Propositional Logic). The EBS pre-institution of propositional logic
is defined as follows:

– Sig , Sen ,Mod are defined as in Example 1;
– Given a signature Σ and a Σ-model v : Σ → {0, 1}, JvKΣ = 1I, where 1I is a

set with only one element. The relation v |=Σ,1I is defined as follows:
• ∀p ∈ Σ, v |=Σ,1I p if and only if v(p) = 1,
• ∀ϕ ∈ Sen (Σ), v |=Σ,1I ¬ϕ if and only if v 2Σ,1I ϕ,
• ∀ϕ, ψ ∈ Sen (Σ), v |=Σ,1I ϕ ∨ ψ if and only if v |=Σ,1I ϕ or v |=Σ,1I ψ.

It is then clear that v ∈ |Mod (Σ)|, v |=PL

Σ ϕ if and only if v |=Σ,1I ϕ.

Example 7 (Modal Propositional Logic). The EBS pre-institution of modal
propositional logic is defined as follows:

– Sig , Sen ,Mod are defined as in Example 2;
– Given a signature Σ and a Σ-model (E,R), J(E,RKΣ = E and, for every
η ∈ E, (E,R) |=Σ,η is defined as follows:
• ∀p ∈ Σ, (E,R, v) |=Σ,η p if and only if v(η, p) = 1,
• ∀ϕ ∈ Sen (Σ), (E,R, v) |=Σ,η ¬ϕ if and only if (E,R, v) 2Σ,η ϕ,
• ∀ϕ ∈ Sen (Σ), (E,R, v) |=Σ,η �ϕ if and only if for all η′ ∈ E such that
ηRη′, one has (E,R, v) |=Σ,η′ ϕ,

• ∀ϕ, ψ ∈ Sen (Σ), (E,R, v) |=Σ,η ϕ ∨ ψ if and only if (E,R, v) |=Σ,η ϕ or
(E,R, v) |=Σ,η ψ.

6 It was introduced under the term of “Stratified Institution”. The author thinks that
“Elements-Based Institution” is both more adequate and intuitive.
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It is then clear that v |=MPL

Σ ϕ if and only if v |=Σ,η ϕ for every η ∈ J(E,R)KΣ .

Example 8 (First Order Logic). The EBS pre-institution of first order logic is
defined as follows:

– Sig and Mod are defined as in Example 3;
– Sen : Sig → Set is a functor that associates every signature Σ ∈ |Sig | with the

set of all first order formulae built over Σ (i.e. including open formulae);
– Given a signature Σ = (S,F ,R), a set of variables X and a Σ-structure M,

JMKΣ = MX and, for every interpretation of variables ν ∈MX , M |=Σ,ν is
defined as follows:
• ∀t, t′ ∈ TΣ(X ), M |=Σ,ν t = t′ if and only if ν(t) = ν(t′),
• ∀r ∈ Rn, ∀t1, . . . , tn ∈ TΣ(X ), M |=Σ,ν r(t1, . . . , tn) if and only if

(ν(t1), . . . , ν(tn)) ∈ rM

• ∀ϕ ∈ Sen (Σ), M |=Σ,ν ¬ϕ if and only if M 2Σ,ν ϕ,
• ∀x ∈ X , ∀ϕ ∈ Sen (Σ), M |=Σ,ν (∀x)ϕ if and only if M |=Σ,ν′ ϕ for every

interpretation ν′ such that ν′(y) = ν(y) for every variable y ∈ X , except
eventually for x,

• ∀ϕ, ψ ∈ Sen (Σ), M |=Σ,ν ϕ ∨ ψ if and only if M |=Σ,ν ϕ or M |=Σ,ν ψ

It is then clear that M |=FOL

Σ ϕ if and only if M |=Σ,η ϕ for every η ∈ JMKΣ .

Example 9 (Modal First Order Logic). The EBS pre-institution of modal first
order logic is defined as follows:

– Sig , Sen ,Mod are defined as in Example 4;
– Given a signature Σ = (F ,R) and a Σ-model (E,R), J(E,R)KΣ = E, for all
η ∈ E, (E,R) |=Σ,η is defined inductively on the structure of formulae in the
following way:
• ∀t, t′ ∈ TΣ(X ), (E,R) |=Σ,η t = t′ iff η |=Σ t = t′,
• ∀r ∈ R, ∀t1, . . . , tn ∈ TΣ(X ), (E,R) |=Σ,η r(t1, . . . , tn) ssi η |=Σ

r(t1, . . . , tn),
• ∀ϕ ∈ Sen (Σ), (E,R) |=Σ,η ¬ϕ iff (E,R) 2Σ,η ϕ,
• ∀x ∈ X , ∀ϕ ∈ Sen (Σ), (E,R) |=Σ,η (∀x)ϕ iff η |=Σ (∀x)ϕ,
• ∀ϕ ∈ Sen (Σ), (E,R) |=Σ,η �ϕ iff for all η′ ∈ E such that ηRη′, we have

(E,R) |=Σ,η′ ϕ,
• ∀ϕ, ψ ∈ Sen (Σ), (E,R) |=Σ,η ϕ ∨ ψ iff (E,R) |=Σ,η ϕ or (E,R) |=Σ,η ψ.

It is then clear that (E,R) |=MFOL

Σ ϕ if and only if (E,R) |=Σ,η ϕ for every
η ∈ J(E,R)KΣ . In order to see the second level of this elements-based semantics,
i.e. the one due to the interpretation of the variables, one must detail the ex-
pression η |=Σ ϕ, where η is a first order model. Basically the work is the same
than for Example 8

Definition 4 (EBS-Institution). An EBS-institution Iebs is a EBS pre-
institution that satisfies the satisfaction condition, i.e. :
∀σ ∈ Sig (Σ,Σ′), ∀M′ ∈ |Mod (Σ′)|, ∀ϕ ∈ Sen (Σ),

M′ |=Σ′ Sen (σ)(ϕ) ⇔ Mod (σ)(M′) |=Σ ϕ
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Under a very simple hypothesis EBS pre-institution present EBS institu-
tions.

Proposition 2. Every EBS pre-institution Iebs = (Sig , Sen ,Mod , JK) such that
for every signature morphism σ ∈ Sig (Σ,Σ′) and every Σ′-model M′ ∈
|Mod (Σ′)| there exists a natural transformation JKσ : JKΣ′ ⇒ JKΣ ◦ Mod (σ) that
satisfies both following conditions:

1. for every Σ′-model M′ ∈ |Mod (Σ′)|, JM′Kσ is a surjective mapping;
2. for every Σ-sentence ϕ ∈ Sen (Σ) and every η′ ∈ JM′KΣ′ :

M′ |=Σ′,η′ Sen (σ)(ϕ) ⇐⇒ Mod (σ)(M′) |=Σ,JM′Kσ(η′) ϕ

is a EBS-institution.

The overall interest of EBS-institutions compared to the usual institutions is
to be able to take into account open formulae. Indeed, the definition of satisfac-
tion in the institutions restricts de facto the set of formulae of a given signature
to the set of closed formulae (sentences) over this signature. But free variables
and open formulae are two very important concepts of Model Theory. A certain
number of constructions and results rely on these two concepts. As an example,
the Method of Diagrams which allows to build elementary equivalent models is
defined on the concept of free variables.

Because free variables and open formulae can be modelled using an elements-
based semantics we believe that this construction is a powerful tool to investigate
Institution-Independant Model Theory. Some results, such as the Method of
Diagram (cf. [Bar05]) and the concept of Elementary Morphism (cf. [AD06])
have already been generalized at the institution level using an elements-based
semantics.

The approach of elements-based semantics to Institution-Independant Model
Theory is quite different in nature than the one followed by R. Diaconescu
in [Dia05]. This last approach focuses on the notion of axiomatisation of models
and uses it to investigate Model Theory at the institution level. We rather focus
on the elements used to define the satisfaction relation. This gives a different
and hopefully complementary view on Institution-Independant Model Theory.

3 Abstract Modalities and Connectors

In order to model the quantifiers and the modalities we now need to extend
the elements-based semantics construction with a notion of abstract syntax.
Although this extension is conceptually close to the approach followed with the
parchments [MTP98], they are quite different in nature in the sense that we
simply consider a set of atomic elements on which operate the elements of a set
of operations. These two sets can be seen as the set of generators and the set
of relations of an abstract group. In other words, the atomic formulae of the
language are the generators and the connectives, quantifiers and modalities are
the operations.

Before we can do so, we need to introduce the following notions.
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Definition 5 (Constructor Signature). A constructor signature is a family
C = (Cn)n∈IN of sets indexed by the set of natural numbers. For every n ∈ IN,
an element c ∈ Cn is called constructor of arity n. We will note either c ∈ Cn

or cn ∈ C.

Definition 6 (Constructor Morphism). A constructor morphism is a map-
ping ς : C1 → C2 that preserves arity, i.e. :

∀n ∈ IN, ∀c ∈ Cn
1 , ς(c) ∈ Cn

2

It is clear that constructor signatures are the objects of a category LogSig ,
morphisms of which are the constructor morphisms.

Notation 31 Let C = (Cn)n∈IN be a constructor signature. We will note TC the
set of terms built over the signature C.

Definition 7 (Constructor Algebra). Let C = (Cn)n∈IN be a constructor
signature. A C-algebra A is a carrier set A together with a mapping a : TC →
℘(A).

The elements of the carrier set of a C-algebra are called states in the following.

Definition 8 (C-Algebra Morphism). Let C = (Cn)n∈IN be a constructor
signature and let A and B be two C-algebras. A morphism of C-algebras from A

to B is a mapping h : A→ B such that the following diagram is commutative:

TC ℘(A)

℘(B)

a

b ℘(h)

It is clear that for every constructor signature C ∈ |LogSig | the C-algebras are
the objects of a category LogM od , morphisms of which are the C-algebras mor-
phisms. This allows us to define the contravariant functor LogM od : LogSig → Cat
that associates with every constructor signature C ∈ |LogSig | the category of
C-models LogM od (C) and, to every constructor morphism ς ∈ LogSig (C, C′), the
forgetful functor LogM od (ς) : LogM od (C′) → LogM od (C) such that for every
C′-algebra of constructor A′ ∈ |LogM od (C′)|, LogM od (ς)(A′) = A ∈ |LogM od (C)|
is the C-algebra defined by A = LogM od (ς)(A′) and, for every constructor
symbol c ∈ C, a(c) = a′(ς(c)).

The previous definition shows that for every constructor signature C ∈
|LogSig |, the C-algebras associate with a set of states every formula built over
C (or C-term). Intuitively this set is the set of states for which the formula is
true. The satisfaction of a formula ϕ ∈ TC in a C-algebra A ∈ |LogM od (C)| is
defined in the same way:

A |=C ϕ⇔ ∀η ∈ A, A |=C,η ϕ

where A |=C,η ϕ⇔ η ∈ a(ϕ).
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Notation 32 In order to use lighter notations we will note JKC the mapping
that associates with every C-algebra A = (A, a) its carrier set A. The C-algebra
A = (A, a) can then be noted (JAK, A) without any ambiguity.

We can now make the link with the elements-based semantics.

Definition 9 (κEBS-institution). A κEBS-institution κIebs is the provid-
ing of an EBS-institution Iebs = (Sig , Sen ,Mod , JK) and a functor κ : Sig →
LogSig such that for every signature Σ ∈ |Sig | there exists a function βΣ :
|Mod (Σ)| → |LogM od (κ(Σ))| natural in Σ (cf. Fig. 1) and:

– ∀Σ ∈ |Sig |, Sen (Σ) = Tκ(Σ) ;
– JMKΣ = JβΣ(M)Kκ(Σ) for every Σ-model M ∈ |Mod (Σ)| ;
– M |=Σ,η ϕ iff βΣ(M) |=κ(Σ),η ϕ.

Σ

σ

Σ′

Mod (Σ)

Mod (Σ′)

Mod (σ)

LogM od (κ(Σ′))

LogM od (κ(σ))

LogM od (κ(Σ))
βΣ

βΣ′

Fig. 1. Σ-models and κ(Σ)-algebras

The previous definition show that for every signature Σ ∈ |Sig |, the satis-
faction of a Σ-formula ϕ ∈ Sen (Σ) in a Σ-model M ∈ |Mod (Σ)| depends on
the set of states associated with ϕ in the corresponding κ(Σ)-algebra βΣ(M).
One will also note that the functor Sen is now redundant with functor κ. In the
following we will present a κEBS-institution as a 4-tuple (Sig , κ,Mod , JK) when
the existence of the associated EBS-institution will not be pre-supposed.

Example 10 (Propositional Logic). The κEBS-institution of propositional logic
is the providing of the couple (Iebs

prop, κprop) such that Iebs
prop is the EBS-

institution defined in Example 6 and κprop : Sig prop → LogSig is the functor

such that for every signature Σ ∈ |Sig
prop

|, κprop(Σ) is the signature (Cn)n∈IN

of constructors defined as:

– C0 = Σ ;
– C1 = {¬} ;
– C2 = {∨} ;
– ∀n > 2, Cn = ∅.

Moreover, βΣ : |Mod prop(Σ)| → |LogM od (κprop(Σ))| is the function such that for
every Σ-model v ∈ |2Σ |, βΣ(v) = (1I, a) where a : Tκprop(Σ) → ℘(1I) is defined
inductively on the structure of formulae in the following way:
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– ∀ϕ ∈ Σ, a(ϕ) = 1I if v(ϕ) = 1
∅ otherwise

– ∀ϕ ∈ Tκprop(Σ), a(¬ϕ) = 1I \ a(ϕ) ;
– ∀ϕ, ψ ∈ Tκprop(Σ), a(ϕ ∨ ψ) = a(ϕ) ∪ a(ψ).

Example 11 (Modal Propositional Logic). The κEBS-institution of modal
propositional logic is the providing of the couple (Iebs

mod, κmod) such that Iebs

mod is
the EBS-institution defined in the Example 7 and κmod : Sigmod → LogSig is
the functor such that for every signature Σ ∈ |Sig

mod
|, κmod(Σ) is the signature

(Cn)n∈IN of constructors defined as:

– C0 = Σ ;
– C1 = {¬,�} ;
– C2 = {∨} ;
– ∀n > 2, Cn = ∅.

Moreover, βΣ : |Mod mod(Σ)| → |LogM od (κmod(Σ))| is the function such that for
every Σ-model (E,R) ∈ |Mod mod(Σ)|, βΣ((E,R)) = (E, a) where a : Tκmod(Σ) →
℘(E) is defined inductively on the structure of formulae in the following way:

– ∀ϕ ∈ Σ, a(ϕ) = {η ∈ E/v(ϕ, η) = 1} ;
– ∀ϕ ∈ Tκmod(Σ), a(¬ϕ) = E \ a(ϕ) ;
– ∀ϕ, ψ ∈ Tκmod(Σ), a(ϕ ∨ ψ) = a(ϕ) ∪ a(ψ).
– ∀ϕ ∈ Tκmod(Σ), a(�ϕ) = R−1a(ϕ) ;

Example 12 (First Order Logic). The κEBS-institution of first order logic is
the providing of the couple (Iebs

lpo , κlpo) such that Iebs

lpo is the EBS-institution
defined in the Example 8 and κlpo : Sig lpo → LogSig is the functor such that for

every signature Σ ∈ |Sig
lpo

|, κlpo(Σ) is the signature (Cn)n∈IN of constructors
defined as:

– C0 = AtomΣ ;
– C1 = {¬} ∪

⋃

x∈X{∀x} ;
– C2 = {∨} ;
– ∀n > 2, Cn = ∅.

Moreover, βΣ : |Mod lpo(Σ)| → |LogM od (κlpo(Σ))| is the function such that for
every Σ-model M ∈ |Mod (Σ)|, βΣ(M) = (MX , a) where a : Tκlpo(Σ) → ℘(MX )
is defined inductively on the structure of formulae in the following way:

– ∀ϕ ∈ Atom Σ , a(ϕ) = {ν ∈MX/M |=Σ,ν ϕ} ;
– ∀ϕ ∈ Tκlpo(Σ), a(¬ϕ) = MX \ a(ϕ) ;
– ∀ϕ, ψ ∈ Tκlpo(Σ), a(ϕ ∨ ψ) = a(ϕ) ∪ a(ψ).

– ∀ϕ ∈ Tκlpo(Σ), ∀ν ∈ MX , ν ∈ a(∀xϕ) iff ν′ ∈ a(ϕ) for every interpretation

ν′ ∈MX such that ν′(y) = ν(y) for every y ∈ X \ {x}.

We now have a complete set of tools to reason about quantifiers and modal-
ities. Not only we can investigate both notions of quantification and modality.
and give a more abstract view on existing work on the subject, but we can
also investigate the notion of logic combination using the power of the abstract
syntax.
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4 Future Work

We have introduced two constructions that allow to model the elements on
which the definition of the satisfaction relation relies, namely internal elements-
based semantics and (external) elements-based semantics. Although the internal
elements-based semantics construction is quite limited we believed that it can
be a useful tool to investigate predicate-like satisfaction. On the other hand
the more general construction of elements-based semantics does not have these
limitations. It seems to be a proper tool to investigate both notions of quantifi-
cation and modality in a unified framework and at an abstract level. Moreover,
as shown by some results already obtained ([Bar05],[AD06]), EBS-institutions
allow investigations in Institution-Independent Model Theory and generalisation
of Classical Model Theory results to the level of Institution Theory. This latter
approach is quite different in nature from the one followed in [Dia05] as it focuses
only on the definition of the satisfaction relation.

Future work include the following:

– Investigate both concepts of modality and quantification, their similarities
and differences, as well as the methods and technics to introduce quantifica-
tion and/or modalities in a logic or to temporalise a logic;

– Investigate the different existing semantics (possible world semantics, coun-
terpart semantics, etc.) for modal and temporal logics using elements-based
semantics;

– Investigate logic combination. At each steps of the validity check of a for-
mula, and depending on the constructor to be interpreted, we would use the
semantics that corresponds to this constructor, discarding all other elements
of the original structure.
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Abstract. In this paper we study separation proofs for schedulers writ-
ten in a typed λ-calculus plus a monad. First we demonstrate separation
proofs at a high level of reasoning for a variety of simple schedulers. Sec-
ond, we lay the foundations for mechanizing these in the proof assistant
Coq. We also argue why a proof of separation for a model extends to a
proof of separation for code running on hardware.

1 Introduction

This paper demonstrates separation proofs at a high level of reasoning, for sched-
ulers written in the λ-calculus plus a monad. It then lays the foundations for
mechanizing these. The intent of this foundation is to allow proofs about more
elaborate schedulers.

The separation problem is: given a scheduler managing many processes, does
any one process have an undue influence upon another? If we focus on a particu-
lar process, called the process of interest (abbreviated POI) then an alternative
phrasing of the problem is: when the POI runs interleaved with unrelated pro-
cesses, does its behavior differ from when it runs alone? A more concrete phrasing
depends on fixing parameters such as: the number of POIs, the specific scheduler,
and whether the processes are non-deterministic. One instance of the problem
is:

LR d → % 〈c, d〉 ∼= % 〈c〉

where % is a round-robin scheduler, 〈c, d〉 and 〈c〉 are queues of processes, the
precondition on d, similar in spirit to Rushby’s local respect [Rus92], says that
atomic events associated with d are ignored by the equivalence relation ∼=.

The separation problem comprises two questions. First, whether the compo-
nents of the scheduler are “correct,” for an appropriate notion of correctness. For
the memory system, one simple notion of correctness is that distinct processes
access disjoint regions of memory. Second, assuming correct parts, whether the
scheduler maintains separation. We refer to this latter question as the Assembly
Problem.

This paper focuses on the Assembly Problem for various schedulers, on the
proof techniques needed to solve it, and how to mechanize these proofs in Coq.
There is little detail here about the ongoing mechanization in Coq, but Coq’s
limitations influenced this presentation.
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The context for this work is the House operating system [HJLT05]. House is
written in a strongly typed pure functional language, Haskell, plus the H monad
(or hardware monad). The H monad is intended to be a small, coherent interface,
a more easily formalized alternative to Haskell’s IO monad. The type system rules
out many sources of bugs, but it not strong enough to show separation.

1.1 Equivalences.

A central notion in the proofs is an equivalence relation between computations.
The intuition behind it is that, if we could instrument the code to log memory
accesses of the POI, we could detect an undue influence by a change in the logs.
However, the presence of some accesses should have no effect: if LR d, then work
done by d should be ignored by the equivalence.

There are a number of notions of equivalence in this paper. In most cases
we use =, e.g. to express laws. There are three cases where a more explicit
equivalence is used. The first is definitional equality, :=, where the name on the
left is defined by the expression on the right. A name in a definition may have
parameters and may involve pattern matching, as is common in Haskell. The
second is the equivalence on OS schedulings, ∼=, which is biased to ignore some
actions. The third, an arbitrary equivalence relation on type A is denoted by ≡A

(or ≡ when the type is clear). It will turn out that ∼= is ≡MA, for an appropriate
monad M.

1.2 Overview

The rest of the paper is as follows. §2 reviews background material: types, mon-
ads, sufficient completeness, and coinduction. §3 has a number of high level
proofs of separation, assuming an adequate notion of equivalence. §4 discusses
the preliminaries to mechanizing proofs: embedding a subset of Haskell into Coq,
an applicative structure on setoids, details of a new monad used to implement
that notion of equivalence, and a new monad used to allow non-terminating
computation. §5 concludes.

2 Background

2.1 Types

Terms are classified by type with the ‘:’ (‘inhabits’ or ‘has type’) relation. For
instance 3 : N asserts that 3 is a natural number.

There are a number of base types. Some are concrete: 1 is the type with
one inhabitant, (); N is the usual type of natural numbers. Some are abstract:
P is a type of process identifiers, with decidable equality; C is a type of process
contexts, each of which has an associated process identifier accessed via ID :
C → P, and each of which holds enough information to pause and resume a
computation. Other operations on these abstract types are introduced as needed.
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There are five type constructions: products, sums, arrows, and least and
greatest fixed points. The first three are binary: given types A and B, the prod-
uct, sum, and arrow are denoted by A × B, A + B and A → B respectively.
Product terms are built by tupling, and taken apart with projection functions
(π1 : A × B → A and π2 : A × B → B). Sum terms are built with injection
functions (ι1 : A → A + B and ι2 : B → A + B) and taken apart with case
analysis. One very useful sum is Option A := 1+A, where None is often used in
place of ι1 (), and Some a for ι2 a. Arrow terms are built by λ-abstraction, and
consumed by function application. We use the style of functional programmers,
writing functions curried, instead of the fully applied style of mathematicians.
That is, instead of f(a, b) we write f a b.

The last two constructors are fixed points. They build recursive types by
taking a functor F describing one level of data and repeating it. For instance,
when F X := 1 + N×X, then µX.1 + N×X is the type of finite lists of natural
numbers, while νX.1 + N×X contains both finite and infinite lists. Terms from
either fixed point can be built with F , or decomposed with case analysis. The
least fixed point µX.F X creates inductive data, that is, terms built up by
finitely many steps of F . The greatest fixed point νX.F X creates co-inductive
data, that is, terms which permit finitely many decomposition steps along the
structure of F .

2.2 Monads

Monads allow the integration of effectful computations with a pure language by
using a type distinction to isolate pure terms from impure ones, by restricting
access to impure terms, and by requiring sequencing of impure terms. State,
exceptions and nondeterminism are effects that monads can model. We will
introduce two more monads in §4.3 and §4.4: the first adds the ability to define
custom program equivalences, the basis for ∼=, and the second allows Coq to
naturally model non-termination.

Operations and Laws. A monad is a triple:

M : Type → Type

η : ∀A.A → MA

? : ∀A B.MA → (A → MB) → MB

satisfying the laws:

associativity: (p ? q) ? r = p ? (λa.qa ? r)
left-identity: η a ? q = qa

right-identity: p ? η = p

M is a type function taking a value type to a computation type. For instance, if
N is the type of natural number values, then MN is the type of a computation
that, when run, has side effects but ultimately produces a natural number. We’ll
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use the term A-value to denote a term from A, and A-computation to denote one
from MA. The polymorphic function η (read as ‘return’ or ‘eta’) has no effect:
it simply promotes a value to a computation. The operator ? (‘bind’) sequences
two computations: the effects of the first occur before those of the second, and
the value computed by the first seeds the second.

The operator >> (‘sequence’) is a specialization of ? which doesn’t pass a
value:

>>: ∀AB.MA → MB → MB p >> q := p ? λ .q

These operators are rough analogs to constructs in imperative languages.
Bind is similar to semicolon (;), except for the value explicitly passed by the
λ-binding. Sequence corresponds exactly to semicolon. Return is similar to an
empty block {} in C, or skip in Algol, except for its value. The reason for the
explicit value is that monads do not presume the presence of state; in contrast,
in C the two subcomputation of ‘;’ communicate implicitly by writing to and
reading from state. Extending the analogy, the associativity law justifies why
procedural abstraction is valid.

A wide variety of effects (and many combinations) can be modelled with mon-
ads. Each effect has associated operations and laws. For instance one interface
for a state monad, which silently threads a component of type S, has operations
put to set the state, get to retrieve the state within a computation, and run to
execute the computation (Figure 1). There are additional laws relating put, get,
run, ? and η.

name type

get MS
put S → M1
run MA → S → A× S

Fig. 1. State Monad Operations

run (η a) s = (a, s)
run (p ? q) s = uncurry (run q) (run p s)
run get s = (s, s)
run (put t) s = ((), t)

Fig. 2. State Monad Axioms

There is another formulation of monads as a 4-tuple (M, η, join,map) where
join : ∀A.M(MA) → MA and map : ∀A B.(A → B) → (MA → MB) with laws
relating the operators [Mac71]. While this alternative is more natural in many
contexts, the first formulation is more natural for imperative programming. The
two formulations are equivalent using:

join m = m ? id map f m = m ? (η ◦ f) m ? k = join (map k m)

2.3 Sufficient Completeness

The H-interface is a common interface to both actual hardware and a model
implemented in the proof assistant Coq. In order to claim that a property of the
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latter holds in the former we need a means to show that the observable behavior
of the model, with respect to the interface, is the same as hardware. To do so we
view the H-monad as an abstract data type (or ADT), and provide a sufficiently
complete axiomatization of it [TM92][Chapter 12].

Definition 2.1. When a new type is defined as an ADT it has associated op-
erators. Each operator is classified as either a constructor, if its return type is
the new type, or an accessor, if its return type is an existing type.

Definition 2.2. An axiomatization of an ADT is sufficiently complete if every
well-formed ground term built with that ADT’s operators either has the new type,
or is equivalent, via the axioms, to a term from an existing type.

Given a sufficiently complete axiomatization of an ADT and two implemen-
tations, the behaviors observable via accessors are identical.

Queues. Queues are used both to implement round robin schedulers, and as an
example of a sufficiently complete specification.

Let QA denote the type of queues containing elements of type A. Figure 3
shows one possible set of queue operators: the four constructors are empty (ab-
breviated 〈〉), enqueue (C), append (++), and serve, while the sole accessor
is next. The axioms are in Figure 4. Informally we’ll write 〈c1, c2 . . . cn〉 for
〈〉C c1 C c2 . . . C cn.

name abbrev. type

empty 〈〉 QA
enqueue C QA → A → QA
append ++ QA → QA → QA
serve QA → QA
next QA → Option A

Fig. 3. Queue Operations

p ++〈〉 = p
p ++(q C a) = (p ++q) C a

serve 〈〉 = 〈〉
serve (〈〉C a) = 〈〉
serve (p C a C b) = (serve (p C a)) C b

next 〈〉 = None
next (〈〉C a) = Some a
next (p C a C b) = next (p C a)

Fig. 4. Queue Axioms

There are well known techniques for showing sufficient completeness (e.g.
[TM92][Chapter 12]). For queues we can build a canonical term algebra generated
by the operators 〈〉 and C, then group the axioms as indicated in Figure 4 to
define total functions on the canonical term algebra. A straightforward structural
induction suffices to show that ++ and serve map canonical queues (i.e. ones
generated by 〈〉 and C and values of pre-existing types) to canonical queues, and
that next maps canonical queues to ground terms.
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Monads. We propose to apply sufficient completeness to monads as well.
Haskell’s IO monad was the ‘killer application’ which introduced monads to

programmers. One key feature of IO is that there are no accessors, hence the
containment of effects, but also the admission that one does not know how IO
behaves.

Many other monads, however, do have accessors. Figures 2 shows a suffi-
ciently complete axiomatization of a state monad with a single accessor, run. It
may seem unintuitive, but get is not an accessor, due to its type.

3 High-Level Proofs

This section sketches proofs for various OS features. Throughout this section,
we assume an equivalence on computations. Later, §4.3 shows how to build this
equivalence.

Hypothesis 3.1 we have an equivalence relation, ∼=, on computations. More-
over, it is a congruence with respect to bind (?), and it is co-inductive: that is,
an equivalence may safely be used in its own proof provided that each side is
unrolled at least once.

The high level separation proofs use co-induction. This technique shows ob-
servational properties of potentially infinite objects; that is, it shows that there
is no finitary evidence contradicting the property. The idea is: if one unfolding of
a goal reveals a similar subgoal but produces no evidence that the goal is false,
then no amount of unfolding can produce such evidence.

§3.1 defines a simple scheduler and proves two simple separation results. §3.2
presents a more realistic scheduler with timer interrupts. §3.3 is more realistic in
an orthogonal way, modelling page faults. Each subsection also discusses prim-
itive operations and assumptions presumed to be part of the H-interface. The
term high level distinguishes these proofs from mechanized ones in Coq. High
level proofs convey meaning to a mathematician, even if details are sketchy, while
mechanized proofs are thorough, to the point of being tedious.

3.1 Basic Round Robin

The round-robin scheduler, % : QC → M1, repeatedly cycles through the pro-
cesses in the queue. It is used in two problems. Solo/Duo separation is the
simplest problem, illustrating the primitives and the reasoning. The n-process
round-robin with one POI shows how the complexity scales with problem size.

Hypothesis 3.2 Assume an atomic step of execution ε : C → MC which leaves
process identifier associated with a context invariant.

The computation ε plays two roles: first, it is the smallest computation man-
aged by the scheduler, and second, it is the atomic step of machine execution.



Verifying Separation for a Monadic Scheduler 37

Definition 3.3 (Local Respect). A process i : P has local respect, denoted by
LR i, iff a step of its execution is unobservable by the equivalence. Specifically:

LR i := ∀c.i = ID c → ∃c′.εc ∼= ηc′

In addition, we overload the predicate LR as follows: LR c, for c : C, means
LR (ID c), and LR~c, for ~c : QC means that for each c in ~c, LR c.

Definition 3.4 (Round Robin Scheduler).

% ~c :=

{
η () if next ~c = None
ε c ? λc′.% ((serve ~c) C c′) if next ~c = Some c

Informally, for a nonempty queue this definition amounts to:

% 〈c1, c2 . . . cn〉 := εc1 ? λc′
1.% 〈c2 . . . cn, c′

1〉

or, more compactly: % 〈c, ~d〉 := εc ? λc′.% 〈~d, c′〉.

Solo/Duo Separation. The solo and duo schedulers instantiate round-robin
on queues of length 1 and 2 respectively.

Theorem 3.5 (Separation). ∀c1c2 : C. LR c2 → % 〈c1, c2〉 ∼= % 〈c1〉
Proof. Use co-induction. Fix c1 and c2, and assume LR c2. By LR c2 it follows
that there is a c for which εc2

∼= ηc and, moreover LR c holds because the step
ε leaves the process ID unchanged. Now, comparing schedulings, observe that:

% 〈c1, c2〉
∼= εc1 ? λc′

1.εc2 ? λc′
2.% 〈c′

1, c
′
2〉 (unfolding % twice)

∼= εc1 ? λc′
1.ηc ? λc′

2.% 〈c′
1, c

′
2〉 (local respect of c2)

∼= εc1 ? λc′
1.% 〈c′

1, c〉 (η is the left identity of ?)
∼= εc1 ? λc′

1.% 〈c′
1〉 (coinductive hypothesis, guarded by εc1)

∼= % 〈c1〉 (folding %)

n-Process Round Robin. We next extend separation to a general round robin
scheduler with one POI and any number of processes showing local respect. But
first we need some lemmas.

Lemma 3.6 (Single Rotation). For any context c, if LR c then there exists
c′ such that LR c′ and for any queue of contexts, ~d, we have % 〈c, ~d〉 ∼= % 〈~d, c′〉
Proof. Unfold the % on the left, apply LR, and note η is the left identity of ?.

Lemma 3.7 (Multi-Rotation). For any lists of context, ~d and ~e if LR ~d then
there is a ~d′ for which LR ~d′ and % 〈~d,~e〉 ∼= % 〈~e, ~d′〉

Proof. By induction on the length of ~d, using the Single Rotation Lemma.

Theorem 3.8 (Separation — Round Robin). For any lists of contexts ~e, ~d

for which LR~e and LR ~d, and for any c we have % 〈~e, c, ~d〉 ∼= % 〈c〉
Proof. By Multi-rotation, unfolding and coinduction.
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3.2 Timer Interrupts

This section sketches separation for a scheduler that executes without switching
contexts until the hardware timer interrupts it.

As this is a redevelopment of §3.1 with different details, none of Hypothe-
sis 3.2 through Theorem 3.8 are available. Hypothesis 3.9 through Remark 3.19
are independent of that work.

Primitives. Recall that in §3.1 ε was both the smallest computation managed
by the scheduler, and the atomic step of machine execution. For timer interrupts,
we distinguish these two roles, keeping ε to denote the former, but for the latter
pushing the interface downwards to reveal ε1. Now take ε1 to be atomic and
build ε from it. Local respect is defined for ε1 and then proven to extend to ε.

Hypothesis 3.9 Assume an atomic step of execution ε1 : C → MC which leaves
process IDs invariant.

Definition 3.10 (Time Slice). ε : N → C → MC

ε 0 c := ε1c ε (S m) c := ε1c ? λc′.ε m c′

Note that ε takes at least one step regardless of the value of n.

Definition 3.11 (Local Respect). LR i := ∀c.i = ID c → ∃c′.ε1c ∼= ηc′

If the equivalence is oblivious to one step of computation of a process, then
it is oblivious to any finite sequence of steps.

Lemma 3.12 (Local Respect of ε). LR c → ∀n.∃c′.εnc ∼= ηc′

Proof. Induction on n

Definition 3.13 (Oracles). An oracle is an infinite stream of natural numbers.
The type of oracles is denoted by Nω. That is: Nω := νX.N×X

An oracle, as an additional argument to %, models time-slices. Each number
in the oracle determines how many ε1-steps a process takes between context
switches. This model is faithful, since for any real execution in hardware, there
is a corresponding stream of naturals.

Definition 3.14 (Round Robin with Oracle).

% : Nω → QC → M1

% (h, t) 〈c, ~d〉 := ε h c ? λc′.% t 〈~d, c′〉

Separation needs a few lemmas for manipulating oracles. The proofs are
omitted as they similar enough to the proof of Theorem 3.5. The first shows a
correspondence between solo and duo schedulings: if LR d then any duo execution
involving d, corresponds to a solo execution without d but using a different oracle.
Specifically:
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Lemma 3.15 (Correspondence). LR d → ∀o.% o 〈c, d〉 ∼= % (alt o) 〈c〉 where
alt selects alternate elements of an oracle: alt (h1, (h2, t)) := (h1, alt t)

The next shows an independence of the behavior of a solo scheduling from the
oracle it uses, but it is easier to establish as a corollary of a more general result.

Lemma 3.16 (Independence, generalized). ∀n1 n2 o1 o2.

ε n1 c ? λc′.% o1 〈c′〉 ∼= ε n2 c ? λc′.% o2 〈c′〉

Corollary 3.17 (Independence). ∀o1 o2.% o1 〈c〉 ∼= % o2 〈c〉

Theorem 3.18 (Separation). ∀o1 o2. LR d → % o1 〈c, d〉 ∼= % o2 〈c〉

Proof. Both sides are equivalent to % (alt o1) 〈c〉, by Independence and Corre-
spondence, respectively.

Remark 3.19. It is possible to recast this work with an implicit oracle, incorpo-
rated into the monad. The landmark results (the definition of round-robin, the
statement of separation) are then identical to those in §3.1, but the proof details
differ.

3.3 Page Faults

Physical memory has two problems: it is limited, and it must be shared among
processes. Yet most operating systems give user processes an abstraction of mem-
ory, called virtual memory, which emulates an unbounded amount of contiguous
memory. It does so with a technique called paging. Memory is divided into uni-
formly sized pages. When all physical memory is in use, yet more is needed, one
page of physical memory is moved to disk. When a page that resides on disk is
needed in memory, space is found in physical memory.

In the following, the key feature is that a step may either advance as normal,
or raise a page fault which halts normal execution, invokes a kernel process to
page the needed data from disk to memory, and then resumes execution.

The separation argument extends to schedulers with a restricted form of page
fault. Page maps, drawn from an abstract type V, are explicitly present as an
extra argument/return value to atomic step, ε, and the scheduler, %. An abstract
type of memory addresses, A, is also explicit.

Primitives. As in §3.2, we push the interface downwards to work with lower
level primitives. In this case there are two primitive computations. The first is
an atomic step of execution, εf , that may either succeed, returning an updated
context, or raise a page fault, returning the address that is not currently mapped.
The second, ξ, extends a page map to include a specific address.

Hypothesis 3.20

εf : V → C → M(C + A)
ξ : V → A → MV
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The memory system for virtual memory is responsible for paging between mem-
ory and disk. For purposes of separation, ξ is a primitive, given by the memory
system. We require an assumption, similar to local respect, that the behavior of
ξ is not observable:

Hypothesis 3.21 ∀v.∃v′.ξva ∼= ηv′

Handling Single-Faultedness. The first step is to define a non-faulting step
of execution, again called ε, for which we can prove separation in the style of
§3.1. A handled step of execution εh combines εf with a page fault handler of
type V → C → A → M(V× C)

εh : V → C → (V → C → A → M(V× C)) → M(V× C)

εh v c h := εf v c ? λx.

{
η (v, c′) if x = ι1c

′

h v c a if x = ι2a

The result is robust to page faults, though we don’t yet have a handler h. The
details of h depend upon the nature of page faults. For concreteness, we make
the following assumption.

Hypothesis 3.22 (single-faultedness) If one step of the execution of context
c with page map v faults, specifying address i, and if extension of v via ξ to
include i yields page map v′, then retrying that step on v′ will not fault.

Given single-faultedness, a robust step function can be coded using εh, and
letting ⊥ stand for an unreachable computation:

ε : V → C → M(V× C)
ε v c := εh v c (λv.λc.λi.ξ v i ? λv′.εh v′ c ⊥)

Note that εh occurs twice here, with the second occurrence being the handler
for the first. The single-faultedness of ξ guarantees that the second use is robust
despite the occurrence of ⊥. The sketch of separation is: from local respect for εf

and ξ, show local respect for εh and for ε; the proof of separation for Theorem 3.5
then goes through with minor modifications.

More General Faults. The single-faultedness assumption is simplistic, but the
approach scales. If the only memory access is through load and store then there
are at most two faults: one accessing the instruction, and one accessing the data.
If a machine operation like ADD can access indirect memory then there may be
numerous faults due to both the number of arguments and the indirect lookup. If
the number of faults is bounded, then a generalization to n-faultedness suffices.
Alternatively, using the iteration monad of §4.4, εf can loop until it succeeds.

Remark 3.23. Page faults are not yet integrated with timer interrupts. To do so
requires εf : V → C → M(C×Option A), which may do non-trivial work before
the interrupt, so it always returns an updated context.
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3.4 Summary of High-level Proofs

The proofs for full round-robin, timer interrupts and page faults are independent
generalizations of the Solo/Duo scheduler problem. It remains to combine all
three generalizations into the same system. We see no fundamental impediment
to combining them, except for an increase in complexity. We anticipate that
having mechanized theorem prover support will be beneficial for that integration.
Next we turn to issues in mechanization.

4 Mechanization Design

The eventual goal of this research is to mechanically verify separation for Haskell
code. Mechanization is necessary to verify actual code, and to deal with tedious
details that arise as schedulers become more complex.

To compensate for the lack of logic in Haskell, we embed the scheduler into
Coq. To support the custom equivalence relation ∼=, which is a central feature of
separation proofs, we use setoids with an applicative structure instead of mere
types. The mechanization strategy leverages the monadic nature of the scheduler
in two different ways. First, as an ADT for computations. Second, to add effects:
logging, which is the basis for ∼=, and non-termination, which is a work-around
for a difficulty in Coq.

4.1 Embedding Haskell in Coq

By an applicative structure we mean an implementation of typed λ-calculus.
Terms may be built by function application and λ-abstraction. Terms evaluate
by β-reduction. Each term has a type, and there is an arrow type constructor,
so that A → B classifies functions from type A to type B.

The features of Haskell that the scheduler uses are the statically typed ap-
plicative structure, non-terminating tail recursion, and the monadic interface to
hardware. Coq implements a simply typed λ-calculus augmented by inductive
and co-inductive types. It provides in an integrated framework both an exe-
cutable language of types & terms, and a language of properties & proofs. To
maintain logical consistency, recursion is restricted in Coq, but it is, in principle,
still powerful enough to implement a scheduler.

At first glance, Coq is the ideal target for the embedding: inductive types
can model the hardware monad, tail recursion maps to co-recursion, and the
applicative structure maps directly. It turns out that we both need a novel ap-
plicative structure, as types are too poor to model our equivalence, and we need
a novel means of iteration, as co-recursion is difficult to use.

4.2 Setoids

Now we discuss the change to the applicative structure. The notion of equality
in Coq is Leibniz equality: two terms are equal iff no context can distinguish
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them. Separation requires a coarser equivalence. Leibniz equality distinguishes
εd from ηd′, as εd has effects, while ηd′ does not: when we assert LR d, we need
to equate these two computations.

To model an equivalence relation on a type, Coq uses a setoid, which is a
type paired with an equivalence relation. An operator on a setoid must be a
congruence, that is a function respecting the equivalence: if f : A → B and
a1 ≡A a2 then fa1 ≡B fa2. Each definition of a λ-term requires a proof of
congruence. We’ll use the term A-equivalence to refer to ≡A.

In this setting, M is a function at the type level which maps any setoid to
another setoid. That is, given a type A, an equivalence ≡A as well as proofs of
reflexivity, symmetry, transitivity of ≡A, a monad M will generate at least five
new items: a type of computations (denoted by MA), an equivalence (≡MA, which
is based on ≡A), and proofs of each of reflexivity, symmetry and transitivity for
≡MA. M may introduce other operations (e.g. put and get) and establish more
laws. Each operation (e.g. η, ?, put, and get) must be a congruence.

4.3 Logging Monad

Logging is key to implementing the coarse-grained equivalence of separation
proofs. For our purposes, the interface is not important; what matters is that it
provides a way to instrument other monads without changing their interfaces.

A logging computation is parameterized by a type of token. Intuitively, an
A-computation is a finite list of these tokens, ending in a value from A. Return
builds an empty list of tokens plus a pure A-value. Bind concatenates two lists,
where the second list depends on the A-value embedded in the first. A new
operation, log : T → Log 1, creates a singleton list from a token.

Formally, fix parameter T , then the fixed point Log A := µX.A + T × X
defines the type of computation. Using V al a := ι1 a and Step t m := ι2 (t, m)
as mnemonic constructors:

log t := Step t (Val ()) Val a ? r := r a

η a := Val a (Step t q) ? r := Step t (q ? r)

It is straightforward to show that the monad laws hold. Two computations are
Log A-equivalent iff their return values are A-equivalent and their token lists are
equivalent (that is, the lists have the same length and T -equivalent entries occur
in corresponding positions).

Instrumentation. The value of logging is in combination with other monads.
Given a set of process identifiers, assert for which ones local respect holds. Given
a monad U with operation ε : C → UC create an instrumented monad MA =
U (LogA) by instantiating T to C, then instrumenting a step of execution:

εM c :=

{
ε c if LR c

log c >> ε c if ¬(LR c)

The coarsened equivalence relation on M is then the relation of 3.1.
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Distributivity. The logging monad is distributive: its effects can be combined
with those of any other monad U because it has an operator, δ : ∀A. Log (A) →
U(Log A), satisfying laws of interaction with the join, map and η operations of
the two monads.

δ (Valu) := mapU Val u δ (Step t m′) := mapU (Step t) m′

4.4 Iteration Monad Transformer

One limitation of Coq is its restriction on recursion. To relax the restriction for
monadic code, we add the ability to loop as a monadic effect, which is sufficient
for OS code. The additional interface is a monad transformer which adds an
iteration operator [BÉ93]. That is, it is a monad (M, ηM, ?M) parameterized by
an underlying monad (U, ηU, ?U), where M gains the effects of U through lifting,
while M also adds the effect of non-termination by adding a loop operation.

name abbrev. type

lift UA → MA

loop † (A → M(A + R)) → A → MR
unroll MA → N → U(Option(N×A))

Fig. 5. Iteration Operations

ηM a = lift (ηU (Some a))

unroll (lift u) n = u ?U λa.ηU (Some (n, a))

unroll (p ?M q) n = unroll p n ?U λx.

(
ηU None if x = None

unroll (q a) m if x = Some (m, a)

unroll (e†a) n =

(
ηU None if n = 0

unroll (ea ?M [e†, ηU]) m if n = S m

Fig. 6. Iteration Axioms

The accessor unroll provides a basis for defining ≡MA in terms of ≡UA.
First, define a preorder on U computations: for ui : UAi let u1 vU u2 mean
∃q.u1 ? q ≡UA2 u2. Next, lift it to a preorder on M: for mi : MAi let m1 vM m2

mean ∀n1.∃n2. unroll m1 n1 vU unroll m2 n2. To define equality, given mi :
MA, i ∈ {1, 2} let m1 ≡MA m2 mean m1 vM m2 and m2 vM m1 and the return
values, if any, of m1 and m2 are equal.

We have the following results (proofs omitted due to space constraints).

Theorem 4.1. if (U, ηU, ?U) is a monad then (M, ηM, ?M) is a monad
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Theorem 4.2. The axiomatization of iteration is sufficiently complete.

Remark 4.3. Arguably, hardware informally is a model as each unrolling corre-
sponds to a backwards local jmp in hardware.

It is possible to implement a model of the iteration monad in Coq by taking
η, ?, lift, and loop as constructors, and to define unroll recursively, though
showing that unroll is well-founded is a little challenging.

Guardedness. Iteration theory is an alternative to using co-induction in Coq,
which has proven difficult to work with. Coq uses a very conservative syntactic
test to ensure that co-recursion is sound, however many simple functions violate
this constraint, as well as proofs that mix induction with co-induction, as Multi-
Rotation does. In general, using co-induction in Coq requires a deal of insight
and creative refactoring of problems. There is active research into better support
for coinductive proofs in Coq, and better programming styles to interact with
co-induction (for instance [BK08], [DA09]) but it is not yet at the state we
require.

Co-inductive proofs are more readable than ones using approximation lemmas
or pre-orders, but at the time of writing, it seems preferable to mechanize using
the latter. Our earlier attempts at mechanization depended on co-induction in
Coq, and this kept us from progressing.

5 Conclusions

5.1 Summary & Future Work

This paper formulates a way of framing the separation problem, shows a variety
of high level, but simple separation proofs (n-process round robin, timer inter-
rupts, page faults), and sketches a way of mechanizing those proofs, and others,
in Coq. Mechanization is essential for two reasons: first, the ultimate goal of this
research is to verify code, and second the amount of proof detail increases with
the scheduler complexity and with H-monad complexity. The hypotheses in this
work are drastic simplifications of the actual H-monad.

We also discussed a strategy for mechanization, comprising an embedding of
Haskell code into Coq, albeit with an applicative structure on setoids instead
of using native types. We use monads to define an appropriate equivalence rela-
tion, ∼=, and to work around limits with Coq’s implementation of coinduction.
Finally, we use sufficient completeness to justify why a proof about a model can
demonstrate a property about real hardware.

This is a work in progress, and much work remains. Foremost, the mecha-
nization is only partially done. Second, we must use more realistic schedulers
and interfaces; a start is to combine n-process round robin, timer interrupts and
page faults into one separation problem. We also need a sufficiently complete ax-
iomatization for a monad of timer interruptions. Some technical work remains:
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We conjecture that the five laws of iteration theory hold (see [BÉ93]) though we
have not yet finished all five proofs.

One reviewer suggested looking at effect terms and imposing equational con-
straints on the resulting Lawvere theories [PP08]. Logging, as presented here, is
an ad hoc mechanism that achieves some of what effect terms do. Preliminary
tests with effect terms show they are a more direct and versatile way of recording
the actions of a computation, so we hope to integrate them in future work. For
instance it may be fruitful to treat non-determinism as a binary (or N-ary) term
constructor instead of an oracle. Unfortunately, effect terms still violate Coq’s
guardedness constraint

5.2 Related Work

Rushby [Rus92] provides an automata-theoretic means of showing noninterfer-
ence. His basic vocabulary includes three notions: local respect, step consistency,
and output consistency. We keep all three, explicitly adopting a variant of the
first, while the two notions of consistency are implicitly maintained by setoids. In
general, his technique is quite powerful, addressing intransitive non-interference.
We address neither transitivity nor intransitivity. On the other hand, his work
only applies to models. Our work is based on the idea of a monad, and lends
itself to proofs about actual code.
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Abstract. The purpose of institutions [GB92] is to formalise the no-
tion of model theory for logics, relating signatures (interfaces), formu-
las (axioms), and models. The use of algebraic specifications for defin-
ing software falls in this framework, with set-theoretic models being the
norm. This gives only an indirect relationship between specifications and
software. Here we investigate a way of using software as models in an
institution. This gives some insight in the expressive power of classical
programming concepts.

1 Introduction

As the size of industrial scale software is increasing, the need for modularisa-
tion of software is seen as more and more acute. This has led to the recent
development of many new structuring mechanisms: templates (generic classes)
[LSAS77,Wag91,Str97,BOSW98], generative programming [CE00], aspect ori-
ented programming [KLM+97], coordination [Fia04], etc. Many of these mech-
anisms are supported by program transformation tools, and in some cases this
manipulation, like macro expansion, is seen as a purely syntactic operation. In
order to better understand such methods, we need the ability to see software
as a formal mathematical entity which can be manipulated by well understood
techniques. Thus we need to approach software as a two-level structure — both
on the syntactic and on the semantic level. When modularisation and software
building operations on these two layers are coordinated, we will have a well-
behaved technology.

Using algebraic specification technology the relationship between syntax and
semantics is handled in a precise way. In algebraic software development tech-
niques the relationship between programs and specifications is typically inter-
preted in one of two ways:

– staying at an algebraic level, seeing a program as the endpoint of a refine-
ment sequence, where a polymorphic specification gradually is turned into a
monomorphic specification ([ST97]), or

– programs and algebras are independent entities, and their connection is an
indirect relationship where the semantics of the program is verified against
the class of models defined by the specification ([GH93]).
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In the algebraic literature the former of these seems to dominate.
Here we will approach programs and implementations of programs directly

as models of specifications. We use a very simplified notion of programs (=algo-
rithms+data structures [Wir76]) - as terms and collections of attribute values,
but where the base types are given as an arbitrary signature. We will then show
that we may build an institution with such programs as models. Notice that,
on such models we may define semantical notions using normal algebraic tech-
niques, but, in addition, due to the syntactical nature of models, other program
properties (such as run-time cost of a program) may be defined and examined.

Our approach seems closely related to that of Fiadeiro [Fia04], which has a
library based approach (using signatures) to defining components. These are then
combined using categorical constructs for building software. Wagner [Wag90]
and Walters [Wal91] use distributive categories to define semantical notions of
programs and program executions and relate these to specifications.

This paper is organised as follows. In section three we define the notion of
programs in a programming language with a support library, showing how to
build an institution with programs as models. Finally we conclude, listing some
future work based on this framework.

2 Preliminary Concepts

Let Set be the category of sets and total functions, CAT the category of all
categories, and Alg the category of total many-sorted algebras and total homo-
morphisms.

Definition 1 (Institution). An institution is given by a quadruple INST =
(Sign,Sen,Mod, |=), where

– Sign is a category of signatures,
– Sen : Sign→Set is a functor giving the sentences
– Mod : Signop→CAT is a functor giving the category of models
– |= is a family of satisfaction relations: |=Θ⊆ Mod(Θ) × Sen(Θ) for each

Θ ∈ |Sign|

such that, for each morphism θ ∈ Sign(Θ,Θ′), the satisfaction condition,

M ′ |=Θ′ Sen(θ)(ϕ) ⇔ Mod(θ)(M ′) |=Θ ϕ,

holds for each M ′ ∈ |Mod(Θ′)| and each ϕ ∈ Sen(Θ).

A standard example is the institution of total many-sorted equational spec-
ifications. A signature Θ = (S, F ) consists of a set of sorts S and function
declarations F with argument lists being strings from S and result type a sort
from S. Signature morphisms θ : Θ → Θ′ map sorts to sorts, function decla-
rations to function declarations, preserving the sorting of arguments and result
types. We have sets of variables sorted by S, and as terms we use all type-correct
expressions formed from variables V and functions declared in F .
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Definition 2 (Total many-sorted equational specifications). The institu-
tion T EL consists of:

– Signature category: the category of total many-sorted signatures Sig and sig-
nature morphisms. For any signature Θ = (S, F ) and variables V sorted by
S there is the standard notion of sorted terms t ∈ T (Θ, V ).

– Sentences: Sen(Θ) for a signature Θ are equations, i.e., triples 〈V, t1, t2〉 of
variables V and terms t1, t2 ∈ T (Θ, V )s for some s ∈ S. Sentence translation
Sen(θ : Θ→Θ′) is systematic renaming of the operations in t ∈ T (Θ, V )
according to θ.

– The models A : Θ→Set for a signature Θ are given by
• Objects: (algebras) A ∈ |Alg(Θ)|, defining a set A(s) for every sort

s ∈ S, a product set Πr∈RA(r) for every family R of S, and a total
function A(f) : Πr∈dom(f)A(r)→A(cod(f)) for every f ∈ F with a family
of argument sorts dom(f) ⊆ S and result sort cod(f) ∈ S.

• Morphisms: (homomorphisms) h ∈ Alg(Θ)(A, B), i.e., an S-indexed
collection of total functions hs : A(s)→B(s) for s ∈ S such that given any
f ∈ F , for all Πr∈dom(f)ar ∈ A(dom(F )) the homomorphism property is
satisfied: h(cod(f))(A(f)(Πr∈dom(f)ar) = B(f)(Πr∈dom(f)h(r)(ar)).

For every signature morphism θ : Θ→Θ′ where Θ = (S, F ) we have the
retract Alg(θ) : Alg(Θ′)→Alg(Θ), such that for an algebra A′ for Θ′,
the algebra A = Alg(θ)(A′) is defined by A(s) = A′(θ(s)), s ∈ S, and
A(f) = A′(θ(f)), f ∈ F , and a homomorphism h′ ∈ Alg(Θ′)(A, B) de-
fines a homomorphism h ∈ Alg(Θ)(Alg(θ)(A′), (Alg(θ)(B′)) by hs = h′θ(s),
s ∈ S.

– The relation A |=Θ 〈V, t1, t2〉 is satisfied when for all assignments α : V→A
we have that A(α)(t1) = A(α)(t2), where A(α)(t) is the evaluation of the
term t ∈ T (Θ, V ) in the algebra A with the assignment α.

Definition 3 (Variable set). Given a signature Θ = (S, F ), a variable set is
a pair (V, sortV : V → S).

Further in the text, we will use V to denote variable set (V, sortV ). For
variables V over a signature Θ = (S, F ) we write sortV (x) = s or x : s to indicate
that the variable x ∈ V is of sort s ∈ S. The function tsortV : T (Θ, V ) → S will
denote expansion of a sortV to terms, tvarV : T (Θ, V ) → Pow(V ) will denote
the function that takes a term t and returns a set of variables used in t. When no
confusion occurs, we may drop index V . Given variables V and V ′ over Θ, then
a substitution σ : V ′→T (Θ, V ) extends to a substitution σ : T (Θ, V ′)→T (Θ, V ).
Composition of extended substitutions is associative.

For a signature Θ = (S, F ), variables V over Θ, and algebra A, a term
t ∈ T (Θ, V )s, s ∈ S, defines a function A(t) : Πv∈V A(sort(v))→A(s) given
by A(t)(a) = A(αa)(t), a = Πv∈V av ∈ Πv∈V A(sort(v)), where αa : V→A is
αa(v) = av, v ∈ V .

Hereafter, we will restrict ourselves to the T EL signature notion Sig and
related T EL sentences Sen. Thus when we write signature, signature morphism
or sentence, this refers to the concepts of T EL rather than the general notions
from the institution concept.
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3 Program Institutions

Current software development is centred around the use of library packages. In
a language like Java [GJS96] there seems to be a package available for most
common tasks. Writing a program based on the appropriate combination of
libraries, significantly reduces the amount of program text needed to be written
by the programmer.

In our model of programs we take the perspective that a programming lan-
guage consists of constructors for building data structures and constructors for
building algorithms on top of a signature which captures the interface to the
chosen library packages.

We assume that the interfaces of all the packages can be integrated to a
standard many-sorted signature Σ. This signature also captures the built-in
types and operations of the language itself, avoiding special treatment of these. A
category of programs may then be defined from Σ and the programming language
constructions. This category is syntax-oriented since programs are written as
structured textual entities.

The semantics of the library signature Σ is given by an object (algebra) A ∈
|Alg(Σ)|. We will not choose any specific algebra, as there may be, albeit small,
semantical variation between various versions of a compiler. Likewise, there may
be, at times large, semantical variations between various implementations of the
library packages.

Writing a new package can be seen as defining an interface, the signature
Θ, and providing an implementation for it, i.e., data structures for the sorts
and algorithms for the operations. This can be defined using mappings to the
category of programs.

In this section we will represent three programming categories that are con-
sidered in this paper: ProgT (Θ), Prog:=(Θ) and Prog:=/∼(Θ). Other choices
are possible, depending on the language we want to consider. ProgT (Θ) category
contains some aspects of a programming language (variables, terms) while others
are omitted (declaration and deletion of variables, order in which variables are
substituted). Yet, the category is powerful enough to show how we can build the
institution with programs as models. The other two categories resemble more
closely to an imperative programming languages.

3.1 Term Program Category

The program category is based on a simplified programming language. Collec-
tions of attributes, defined as sorted sets of variables, are the only data structure
constructions. Algorithms will be defined by well-typed expression terms. This is
a very simple programming language, yet it is powerful enough to show the ideas
of using program categories as models. Since it is built on top of an arbitrary
signature, we can still have most of our expressive power given by the primitive
sorts and operations on these.

Definition 4 (Term Program category ProgT (Θ)). The program category
ProgT (Θ) for a signature Θ = (S, F ) is given by
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– Objects: a data structure V is a set of variables V over Θ.
– Morphisms: an algorithm, a : V1→V2 is a triple 〈V1, V2, σ : V2→T (Θ, V1)〉

where σ : V2→T (Θ, V1) is a substitution.
– Composition: the composite algorithm a′′ = (a; a′) : V1→V3 for morphisms

a = 〈V1, V2, σ : V2→T (Θ, V1)〉 : V1→V2 and a′ = 〈V2, V3, σ
′ : V3→T (Θ, V2)〉 :

V2→V3 is given by a′′ = 〈V1, V3, σ
′′ : V3→T (Θ, V1)〉 where σ′′ = σ ◦ σ′.

This gives an associative composition where the identity morphism is given by
identity substitution.

Thus an algorithm is identified by its inputs V1, its outputs, V2, and for each
output variable the code (term) which computes it. Two data structures are
isomorphic if there is a renaming of attribute variables between them.

Example 5. Given the signature Θ = ({int}, {+ : int, int → int}), the triple
〈{x, y}, {z}, σ(z) = x ∗ y + x ∗ y〉 is an example of a morphism between objects
{x, y} and {z} in ProgT (Θ).

Categorical properties of ProgT (Θ). Model category of any signature in
T EL is complete and cocomplete. This means that we may build new models
out of the existing ones. Later in 3.6, will see that positive categorical properties
of ProgT (Θ) will also be preserved by a model category for any signature in
the institution that we are building (with ProgT (Θ) in its basis), so we want to
investigate categorical properties of ProgT (Θ).

Proposition 6 (Program products). Given a signature Θ.

– A product Πx∈XVx ∈ |ProgT (Θ)|, over an index set X for data structures
Vx ∈ |ProgT (Θ)|, x ∈ X, is given by ]x∈XVx, the disjoint union of attributes
Vx, x ∈ X.

– The projections are 〈]x∈XVx, Vy, σ : Vy→T (Θ,]x∈XVx)〉 for every y ∈ X,
where σ(v) = v is the injection of each v ∈ Vy into the disjoint union.

– The mediating morphism for ay = 〈V, Vy, σy : Vy→T (Θ, V )〉 : V→Vy, y ∈ X,
is a = 〈V,]x∈XVx, σ : ]x∈XVx→T (Θ, V )〉 : V→]x∈X Vx where σ(v) = σy(v)
for v ∈ Vy ⊆ ]x∈XVx.

Proof. Straight forward. ut

Proposition 7 (Terminal objects). The terminal object is the empty set of
variables.

Proof. The empty substitution is the unique morphism into the empty set of
variables. ut

Proposition 8 (Coequalizers). Category ProgT (Θ) has all coequalizers.

Proof. For two syntactically different substitutions f, g : V ′ → T (Θ, V ) there
exist substitution e : V ′′ → T (Θ, V ′) defined by V ′′ = {v ∈ V ′|f(v) = g(v)} and
e(v) = v for all v ∈ V ′′ is coequalizer. ut
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Proposition 9 (Program coproducts). Category ProgT (Θ) has all (non-
empty) coproducts.

Proof. The coproduct for objects Ay ∈ |ProgT (Θ)|, y ∈ I, is given by the object
CPAy,y∈I = {vw|w ∈ Πy∈IT (Θ,Ay)}. Arrow iAy

: Ay → CPAy,y∈I is given by
substitution σiAy

(vt) = ty where t is an element of Πy′∈IT (Θ,Ay) and has ty
as its y-th component. For any object X ∈ |ProgT (Θ)| and set of morphisms
fy, y ∈ I, mediating morphism mX,fy,y∈I : CPAy,y∈I → X is given by the
substitution σmX,fy,y∈I

(v) = vt where for any y ∈ I, y-th component of t is term
ty such that underlying substitution of fy has σfy (v) = ty.
Coproduct properties are satisfied:

– The compositionality requirement is satisfied: mX,fy,y∈I(v) = . . . × fy(v) ×
. . . and iAy (. . . × f(v) × . . .) = fy(v) for any v ∈ X and any y ∈ I so
iAy

; mX,fy,y∈I = fy.
– The uniqueness of mediator requirement is satisfied: any different mediating

morphism m′ would mean that there exist at least one v such that m′(v) 6=
mX,fy,y∈I(v). But then at least one iAy for some y ∈ I would have fy(v) 6=
iAy ; m′(v) so m′ would not be mediator.

For two syntactically different substitutions f, g : V ′ → T (Θ, V ) there exist
no substitution e such that e; f and e; g are syntactically equal, so category does
not have all equalizers. Also, consider a signature with at one sort s and two
constants c and c′. For the object V = {x} with sort(x) = s, there exist at least
two distinct substitutions (one with x = c and the other with x = c′) from any
other object V ′ of |ProgT (Θ)| into V . This means that initial objects do not
exist.

Set-based semantics of ProgT (Θ).

Proposition 10. An algebra A : Θ→Set for a signature Θ extends to a functor
A : ProgT (Θ)→Set given by

– A(V ) = Πv∈V A(sort(v)) for every set of variables V over Θ.
– A(a : V1→V2) = f : A(V1)→A(V2) for a = 〈V1, V2, σ : V2→T (Θ, V1)〉, f =
〈A(σ(v)) : A(V1)→A(sort(v)) | v ∈ V2〉, x ∈ A(V1), the mediating morphism
for the total functions A(σ(v)).

Proof. It is obvious that A preserves composition and identities. ut

With this functor we may consider an arbitrary algorithm as the definition of a
total set-theoretic function. This is our basis for understanding the semantics of
programs.

Definition 11 (Equivalent algorithms). Given a signature Σ and an algebra
A : Σ→Set, the set A(A, a : V1→V2) = {a′ : V1→V2 | A(a′) = A(a)} is the
collection of all algorithms a′ equivalent to a given algorithm a in the algebra A
for Σ.
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3.2 Assignment Program Category Prog:=(Θ)

Now we will describe different program category, the category Prog:=(Θ), that
more closely resembles an imperative programming language.

Given an environment, we may assign a term to one variable, create new
variable (and assign a term to it) or we may delete a variable. The last two
operations change a variable set we are working on.

Definition 12 (Instructions with environment). The class of instructions
with environment over signature Θ = (S, F ), denoted IE(Θ), is defined as fol-
lows:

– 〈V, V, x := t〉 ∈ IE(Θ) when x ∈ V , t ∈ T (Θ, V ) and sortV (x) = tsort(t),
– 〈V, V ∪ {x}, new s x := t〉 ∈ IE(Θ) when x /∈ V , t ∈ T (Θ, V ) and s =

tsort(t) = sort{V ∪{x}}(x),
– 〈V, V − {x}, del x〉 ∈ IE(Θ) when x ∈ V .

In general, an element of IE(Θ) will be denoted as 〈V, V ′, i〉. Given two variable
sets V and V ′, a class of all 〈V, V ′, i〉 is denoted IE(Θ)V,V ′

Definition 13 (Used variables). Given signature Θ = (S, F ), and a sets of
variables V ′ and V such that V ′ ⊆ V . ivarV -function of V is a map IE(Θ) →
Pow(V ) defined in following way:

– ivarV (〈V ′, V ′, x := t〉) = tvarV (t) ∪ {x} for any x ∈ V
– ivarV (〈V ′, V ′ ∪ {x}, new s x :=, t〉) = tvarV (t) ∪ {x} for any x ∈ V ′ − V ,
– ivarV (〈V ′, V ′ − {x}, del x〉) = {x} for any x ∈ V ′.

Function ivarV can be viewed as extension of corresponding tvarV function from
terms to instructions with environment.

Definition 14 (Right hand side of an instruction). We will use rhs(i) to
denote the term t used in instruction i:

– rhs(x := t) = t
– rhs(new s x := t) = t
– rhs(del x) is undefined.

Definition 15 (Instruction lists with environment). A class of instruction
lists over signature Θ, denoted IL(Θ) is defined inductively as follows:

– 〈V, V, ε〉 ∈ IL(Θ) for every set of variables V (empty set included).
– i ∈ IE(Θ) ⇒ i ∈ IL(Θ)
– 〈V1, V2, l〉, 〈V2, V3, l

′〉 ∈ IL(Θ) ⇒ 〈V1, V3, l; l′〉 ∈ IL(Θ)

Class IL(Θ) is the closure of the class IE(Θ) under concatenation. In general, a
member of IL(Θ) will be denoted as a triple 〈V1, V2, l〉. Further in the text, we
will use xi := ti(V) as a short version for a list of assignments < x1 := t1; x2 :=
t2; . . . xn := tn > over some variable set V = {x1, x2, . . . xn}. We will use
similar notation for lists of variable creations (new s xi := ti(V)) and lists of
variable destructions (del xi(V)).
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Definition 16 (Assignment program category Prog:=(Θ)). Given signa-
ture Θ = (S, F ). A category Prog:=(Θ) is given by

– Objects: a data structure V is a set of variables V over Θ.
– Morphisms: an algorithm a : V1→V2 is an element (denoted by 〈V1, V2, la〉)

of IL(Θ).
– Composition: list concatenation
– Identity: 〈V, V, ε〉 is identity morphism for any V ∈ |Prog:=(Θ)|.

This gives an associative composition where the identity morphism for object V
is given by the triple 〈V, V, ε〉.

Example 17. Given the signature Θ = ({int}, {+ : int, int → int}), the triple
〈{x, y}, {z}, new s z := x ∗ y + x ∗ y ; del x ; del y〉 is one possible morphism
between objects {x, y} and {z} in Prog:=(Θ).

Example 18. Given the signature Θ = ({int}, {+ : int, int → int}), the triple
〈{x, y}, {z}, new s w := x ∗ y ; new s z := w + w ; del w ; del x ; del y〉 is an-
other possible morphism between objects {x, y} and {z} in Prog:=(Θ).

Notice that these two different morphisms of Prog:=(Θ) are Set-semantically
related to the morphism introduced in the example 5.

Since all syntactically different morphisms are different, it is easy to prove
that category does not have products, coproducts, equalizers and coequalizers.

By assigning a runtime-cost to variable creations, variable assignments, vari-
able deletions and to each operation in Σ, we are able to differentiate between
runtime costs of the morphisms in Prog:=(Θ). For example, allocation and deal-
location of variables in allows us to write code that takes runtime into consider-
ation - we may write new s x := t ; y := t′[t→x] ; del x instead of y := t′ when
t occurs several times in t′.

3.3 Quotiented Assignment Program Category

We may introduce some equivalence of morphisms in Prog:=(Θ). The equivalence
is given by the following relation:

Definition 19 (Equivalence of morphisms in Prog:=(Θ) - relation ').
The following instruction lists are ∼b-related:

– elimination rules:

〈V, V, x := t ; x := t′〉 ∼b 〈V, V, x := t′[x→t]〉, (1el)
〈V, V ′, x := t ; del x〉 ∼b 〈V, V ′, del x〉, (2el)
〈V, V ′, new s x := t ; x := t′〉 ∼b 〈V, V, new s x := t′[x→t]〉, (3el)
〈V, V, new s x := t ; del x〉 ∼b 〈V, V, ε〉, (4el)
〈V, V, del x ; new s x := t〉 ∼b 〈V, V, x := t〉 (5el)

– identity assignment rule:

〈V, V, x := x〉 ∼b 〈V, V, ε〉 (1ai)
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– variable substitution rules:

〈V, V, i[x→x]〉∼b

〈V, V, i〉 (1vs)
y /∈ ivar(i) ∧ z /∈ ivar(i[x→y]) ⇒ 〈V, V, i[x→y][y→z]〉∼b

〈V, V, i[x→z]〉 (2vs)
y /∈ ivar(i) ⇒ 〈V, V, new s y := x ; i〉∼b

〈V, V, i[y→x] ; new s x := y〉 (3vs)

– change order of instruction rules. In these rules, ix denotes any instruction
that has the variable x on the left side of the instruction (including del (x)).
Similarly, iy denotes any instruction that has the variable y on the left side
of the instruction: 3

(x 6= y) ∧ (y /∈ ivar(ix)) ⇒
〈V, V ′, ix ; iy〉∼b〈V, V ′, iy [x→rhs(ix)] ; ix〉 (1ie)

(x 6= y) ∧ (y ∈ ivar(ix)) ⇒
〈V, V ′, ix ; iy〉∼b〈V, V ′, new sort(y) y′ := y ; iy [x→rhs(ix)] ; ix[y→y′] ; del y′〉

Relation ' ⊆ IL × IL is the smallest equivalence relation that is the re-
flexive, transitive and symmetric closure of relation ∼b, closed under concatena-
tion: whenever (a1, a2) ∈ ' and (b1, b2) ∈ ', then (a1; b1, a2; b2) ∈ '. Further
in the text, the '-class that contain instruction list 〈V1, V2, a〉, will be denoted
[〈V1, V2, a〉]' or just [〈V1, V2, a〉].

Definition 20. Category Prog:=/'(Θ) is a category with

– Objects: are objects of Prog:=(Θ).
– Morphisms: a : V1→V2 are '-equivalence classes.
– Composition: the composition of two equivalence classes [〈V1, V2, a1〉] and

[〈V2, V3, a2〉] is equivalence class [〈V1, V3, a1; a2〉].
– Identity: equivalence class that contains 〈V, V, ε〉 is identity morphism for

any V ∈ |Prog:=(Θ)|.

Notice that the morphisms introduced in the examples 17 and 18 are equiv-
alent in Prog:=/'(Θ).

Definition 21. Functor TA : ProgT (Θ) → Prog:=/'(Θ) is given by

– TA(V ) = V ,
– TA(< V1, V2, σa : V2 → T (Θ, V1) >) =< V1, V2, l > where

l = < xi := σa(xi)(V2∩V1);
new sort(xj) xj := σa(xj)(V2−V1);
del xk(V1−V2);

>

for all xi ∈ V2 ∪ V1, all xj ∈ V2/V1 and all xk ∈ V1/V2.
3 Notice that in the ’change order of instruction’ rules we accept the possibility that

substitution has no effect (when there is nothing to substitute, such as (1ie) when
both instructions are assignments and x /∈ tvar(rhs(iy)) or, such as (1ie) when rhs
is undefined - when one or both instructions are ’delete sentences’. In addition, rules
do not apply for impossible combinations (such as y ∈ ivar(ix) with ix = insdx).
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In order to define a functor from Prog:=/'(Θ) to ProgT (Θ), notice that for
every instruction list with environment < V1, V2, l >, by applying the equivalence
rules, we may build an equivalent instruction list with environment < V1, V2, lc >
where lc is such that:

– all temporary variables (not belonging to V 1 nor V 2) are removed,
– for every variable vi ∈ V2, there exist only one instruction where vi appears

on the left side of an expression (either vi := ti or new sort(vi) vi := ti,
– that have del vj(vj∈V1−V2) at the end of the list, and
– that have no other instruction.

Definition 22. Functor AT : Prog:=/'(Θ) → ProgT (Θ) is given by

– AT (V ) = V ,
– AT (〈V1, V2, l〉) = 〈V1, V2, σa : V2 → T (Θ, V1)〉 where substitution σa(v) = t

for a variable v ∈ V2 and an appropriate term from < V1, V2, lc >.

There are two main differences between program categories ProgT (Θ) and
Prog:=(Θ). One is variable management in Prog:=(Θ) and the other is order
of instruction execution. Booth of these differences disappear when we consider
Prog:=/'(Θ) due to equivalence rules.

Theorem 23. Category ProgT (Θ) is isomorphic to category Prog:=/'(Θ).

For the proof we refer to [Hod10]. The proof is done by showing that AT and TA
are functors, and that compositions AT ; TA and TA; AT are identity functors.

This theorem implies that categorical properties of ProgT (Θ) are also cate-
gorical properties of Prog:=/'(Θ).

3.4 Implementing an Interface Σ in ProgT (Θ)

When we implement a suite of application programs or implement a new pack-
age, we will provide a code for some interface, which we may consider a total
many-sorted signature Σ. In our framework the implementation will be data
structures and algorithms in ProgT (Θ), where Θ represents the signature of the
libraries and built-in types and operations. We place no apriory restrictions on
the relationship between Θ and Σ. If we are developing a library package, it
may be natural to assume that Θ ⊆ Σ and require that the implementation of
Θ remains unchanged in the development of the rest of Σ. But such a require-
ment would make it impossible to re-implement an existing library package, e.g.,
replacing an inefficient symbol table by a more efficient one. Likewise, if we are
creating application programs, we may want to expose only a minor part of Θ in
the interface. Consider the example of a collection of application programs for a
data base system. Here we do not want to expose all the library packages that
are used in its implementation in the interface of the application software.

By not placing any restrictions on Θ and Σ we are free to exploit such situa-
tions in our framework. However, adding some such restrictions at a later stage
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may provide additional information for certain kinds of software development
situations.

We now define what it means to implement a signature Σ by algorithms in
Θ in a programming language given by the category ProgT (Θ).

Definition 24 (Implementation in ProgT (Θ)). Given signatures Σ and Θ.
The implementation IT : Σ→ProgT (Θ) of Σ by algorithms in Θ defines

– a data structure IT (s) ∈ |ProgT (Θ)| for every sort s ∈ S,
– a product data structure Πr∈RIT (r) for every family R of S,
– an algorithm (IT (f) : IT (dom(f))→IT (cod(f))) ∈ Mor(ProgT (Θ)) for every

f ∈ F .

Example 25. Given the signatures Θ = ({int}, {+ : int, int → int}) and Σ =
({s1, s2}, {o : s1 → s2}), mapping I(s1) = {x, y}, I(s2) = {z} and I(o) =
〈{x, y}, {z}, σ(z) = x ∗ y + x ∗ y〉 is an implementation of Σ in ProgT (Θ).

We will also use IT to translate an arbitrary data structure X (collection of
variables) on Σ to a data structure in Θ, by defining IT (X) = Πv∈XIT (sort(v)).

Definition 26. Given signatures Σ = (S, F ) and Θ with variables V , and an
implementation IT : Σ→ProgT (Θ).
The application IT (t) : IT (V )→IT (s) of IT to terms t ∈ T (Σ,V )s, s ∈ S, is
defined by

– for a compound t = f(Πr∈dom(f)tr) with tr ∈ T (Θ,X), r ∈ dom(f), and
f ∈ F , we have IT (t) = 〈IT (tr) | r ∈ dom(f)〉; IT (〈f〉), and

– for a variable t ∈ V , we have IT (t) = 〈IT (s), IT (s), σ : IT (s)→T (Σ, IT (s))〉,
where σ(v) = v for all v ∈ IT (s).

We may extend an implementation I to a functor I between the Θ algorithms
and the Σ algorithms.

Proposition 27 (Implementations in ProgT (Θ) as functors). Given sig-
natures Σ and Θ. An implementation IT : Σ→ProgT (Θ) for signature Σ ex-
tends to a functor IT : ProgT (Σ)→ProgT (Θ) given by

– IT (V ) = Πv∈V IT (sort(v)) for every set of variables V over Σ.
– IT (a : V1→V2) = 〈IT (σ(v)) : IT (V1)→IT (sort(v)) | v ∈ V2〉 for every mor-

phism a = 〈V1, V2, σ : V2→T (Θ, V1)〉.

Proof. It is obvious that IT preserves composition and identities. ut

For every implementation IT we get a subcategory IT (ProgT (Σ)) of a category
ProgT (Θ).

Implementations will be models in the institution we are building. In order to
build a category Imp(Θ) of implementations for a signature Θ, we need to con-
sider appropriate morphisms in such category. Since objects (implementations)
may be extended to functors, it is natural to consider natural transformations
as relations between the objects.
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Given two implementations I, I ′ of Θ, an implementation morphism may be
defined as the natural transformation i : IT ⇒ I ′T . However, since equality in
ProgT (Θ) requires equality on algorithms (which are based on syntactic terms),
there are few cases where we have interesting implementation morphisms. This
notion basically gives us the isomorphisms (renaming of variables) on implemen-
tations.

Definition 28 (Implementation homomorphism). Given signatures Σ and
Θ, algebra A : Θ→Set and implementations IT , I ′T : Σ→ProgT (Θ). An imple-
mentation homomorphism h : IT→I ′T is a natural transformation h : IT ; A ⇒
I ′T ; A.

The more semantic implementation homomorphisms considers the meaning
of an implementation as an algebra A ◦ IT : Σ→Set, and uses the standard
notion of homomorphism for total many-sorted algebras. Similar implementation
(as functor) constructions may be built for program categories Prog:=(Θ) or
Prog:=/'(Θ).

Similar notion of implementation and implementation morphism may be de-
fined for the two other program categories that we have considered.

3.5 A general program category ProgL(Θ) for a language L

So far, we have presented three program categories: ProgT (Θ), Prog:=(Θ) and
Prog:=/'(Θ). Other program categories are certainly possible.

For any given language L and a signature Θ (the library including primitive
types and operations), we may build a program category. The approach presented
here requires that the following is satisfied:

– Objects of program category ProgL(Θ) are datastructures and morphisms
are program code/terms (algorithms).

– Given an algebra A : Θ→Set, we should be able to extend it to a functor A :
ProgL(Θ)→Set mapping objects to datatypes and morphisms to functions.
This means that the language being considered has Set-based semantics.

– There must exist a mapping I : Σ→ProgT (Θ) This means that we may
implement signatures as program code.

– Every mapping I should be extendable to functor I : ProgL(Σ)→ProgL(Θ)
such that I; A = I; A. This means that every Σ term may be replaced
with the code implementing Σ in the term. This is often called inlining
in compiler terminology. We have this kind of inlining for categories that
resemble Prog:=(Θ). In ProgT (Θ), this is given by substitution rules.

Note that we may use transfinite sets to deal with iteration. In principle, the
category Set may be replaced with other semantical categories, e.g., the category
of domains, according to the language semantics.

The concrete choice of a program category will impact our ability to do rea-
soning on resulting constructions. For example, Prog:=(Θ) allows us to reason
about program properties such as runtime or memory consumption. On the other
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hand, all syntacticly different algorithms are different morphisms in Prog:=(Θ),
so we have no means of talking about equivalent algorithms in Prog:=(Θ). Cat-
egory Prog:=/'(Θ) allows us to discuss equivalence of morphisms but, due to
the equivalence of algorithms, we lose ability to reason about runtime or memory
consumption.

3.6 A Simple Program Institution

In order to establish a model category for an institution, the choice of ProgL(Θ)
is less important since the internal structure of the model categories is not part
of the requirements for an institution.

Definition 29 (Implementation category). Let Σ and Θ be signatures and
A : Σ→Set an algebra. The implementation category ImpΘ,A(Σ) has imple-
mentations I : Σ→ProgL(Θ) as objects and implementation homomorphisms
on A ◦ I as morphisms.

Every ImpΘ,A(Σ) is a functor-category with ProgL(Θ) as its basis. This means
that categorical properties of ProgL(Θ) will be preserved also in ImpΘ,A(Σ) so
by implementing in ProgL(Θ) we get (co)complete ImpΘ,A(Σ). Implementing
in ProgT (Θ) (or in Prog:=/'(Θ)) will result in an implementation category
that have ProgT (Θ) categorical properties.

Definition 30 (Implementation retract). Let Θ, Σ = (S, F ) and Σ′ be
signatures, θ : Σ→Σ′ a signature morphism, and A : Θ→Set an algebra.
An implementation retract is a functor ImpΘ,A(θ) : ImpΘ,A(Σ′)→ImpΘ,A(Σ)
defined by

– ImpΘ,A(θ)(I ′ : Σ′→ProgL(Θ)) = I : Σ→ProgL(Θ) where I(s) = I ′(θ(s))
for s ∈ S and I(f) = I ′(θ(f)) for f ∈ F ,

– ImpΘ,A(θ)(h′ : I ′→J ′) = h : I→J where hs = h′θ(s) for all s ∈ S.

The combination of an implementation category for each signature and an imple-
mentation retract functor for each signature morphism, gives us a model functor
ImpΘ,A : Sigop→CAT.
We derive a satisfaction relation on implementations I : Σ→ProgL(Θ) from the
satisfaction relation on algebras A : Σ→Set.

Definition 31 (Program satisfaction). Let Θ and Σ = (S, F ) be signatures,
and A : Σ→Set an algebra. An implementation I : Σ→ProgL(Θ) satisfies a
specification ϕ ∈ Sen(Σ) for T EL with variables V for Σ, written I |=Θ,A,Σ ϕ,
iff for all assignments α : V→I; A we have that (I; A)(α)(ϕ) holds.

The important point here is that satisfaction is by all elements in the algebra
for the implemented data structure, i.e., the satisfaction relation for the algebra
(I; A).
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Proposition 32 (Program satisfaction condition). Let Σ, Θ and Σ′ be
signatures, I ′ : Σ′→ProgL(Θ) an implementation, θ : Σ→Σ′ a signature mor-
phism, ϕ ∈ Sen(Σ) a sentence, and A : Θ→Set an algebra.
Then

I ′ |=Θ,A,Σ′ Sen(θ)(ϕ) ⇔ ImpΘ,A(θ)(I ′) |=Θ,A,Σ ϕ.

Proof. Follows from T EL since the satisfaction relation is the same. ut

We have now proven the following theorem.

Theorem 33 (Program institution). Let Σ ∈ |Sig| be a signature and A :
Θ→Set an algebra.
Then we get an institution IMP(Σ,A) where

– total many-sorted signatures Sig is the signature category,
– equations Sen : Sig→Set are the sentences (as in T EL)
– the implementation functor ImpΘ,A : Sigop→CAT is the model functor,
– satisfaction is given by the family |=Θ,A of satisfaction relations |=Θ,A,Σ

|ImpΘ,A(Σ)| × |Sen(Σ)| for each Σ ∈ |Sig|.

4 Conclusion and future work

In this paper we have presented a technique for using programs as models
in an institution. First, we have introduced three different program categories
(ProgT (Θ), Prog:=(Θ) and Prog:=/∼(Θ)). With these, we are able to define
the (general) notion of implementation. We also gain the insight into what we
need to take into consideration when building a program category of interest
(discussed in 3.5). Next, we have defined the concept of implementation showing
how to build the libraries for a programming language. Finally, we have built
an institution in which model categories are based on (syntactical) implementa-
tions.
By using a model category based on implementations instead of Set, we obtain
the ability to differentiate between programs that are syntactically different but
Set-semantically equal. This opens up for a possibility to study concepts like
data structure, algorithm, run-time complexity, memory-usage etc. in an insti-
tutional framework. This work could be further expanded in several directions:

– Examine how we may study program properties within the framework - work
on this will be presented in [Hod10].

– Examine additional, more expressive program categories. Program categories
that allows us to express encapsulation of the data structure will be presented
in [Hod10].

– Here, we have focused on equational specifications for total many-sorted
algebras. Since our underlying model is algebraic, it seems straight forward
to apply these techniques to other types of logic.

– Consider implementation between different languages, i.e. implementation
mappings ProgL(Σ)→ProgL′(Θ) which would give an insight into compil-
ers (mapping code → assembly) and program translation in general.
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Abstract. In this paper, we propose two confluent subcalculi of λGtz,
the intuitionistic sequent term calculus of Esṕırito Santo. These calculi
are obtained from λGtz by putting restrictions over the reduction rules
in a way which eliminates the critical pair. We prove the Church-Rosser
property of the proposed calculi using Takahashi’s parallel reductions
technique.

1 Introduction

Designing a term calculus which embodies the Curry-Howard correspondence for
the intuitionistic sequent calculus took several attempts over the years. The first
successful proposal was Herbelin’s λ̄ calculus introduced in 1995 [5], where the
type assignment to normal forms corresponds to the derivation in the modifica-
tion of the cut-free Gentzen’s sequent calculus LJTcf . One of the recent calculi
that embodies full Curry-Howard correspondence for intuitionistic sequent cal-
culus (with cut) is the λGtz-calculus, proposed by Esṕırito Santo in [3]. Simply
typed λGtz-calculus enjoys Subject reduction and Strong normalization property.
Moreover, λGtz-calculus with intersection types, studied in [4], enjoys both Strong
normalization and Characterization of strong normalization property, in other
words, in that system the set of typeable terms coincides with the set of strongly
normalizing terms, which is very useful property for implementation. One of the
specific properties of the λGtz-calculus is its reduction system, particularly β-
reduction. Substitution is not integrated into β-reduction, like in λ-calculus, but
performed separately, through σ-reduction. Furthermore, substitution is not ex-
plicit, like in λx-calculus of Rose [7], but meta-operator. This allows us to delay
substitution in λGtz-calculus, and to simulate both call-by-name and call-by-value
computational strategy, as discussed in [2]. However, there is one undesired con-
sequence of such reduction system - it contains a critical pair, which leads to
non-confluence.

In this paper, we study possible ways to regain confluence. There are two basic
directions in solving this problem. The first one is to make restrictions over the
reduction rules in a way which would eliminate the critical pair. The other one
is to expand the syntax and create an appropriate type assignment system such
that the confluence is obtained for reductions performed on all well typed terms.
Here, we focus only on the first approach. We propose two sub-calculi without
critical pairs and prove the confluence. We use Takahashi’s parallel reductions
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technique, used in [8] for proving the confluence of λ-calculus, which is simpler
then standard Tait and Martin-Löf’s proof of the confluence of βη-reduction in
λ-calculus.

The paper is organized as follows: Section 1 is introductory; in Section 2
we give the basics of simply typed λGtz-calculus; in Section 3 two sub-calculi of
λGtz-calculus, namely λGtz

V -calculus and λGtz
L -calculus, are proposed and Church-

Rosser property for introduced calculi is proved. Finally, in Section 4 we conclude
and give directions for future work.

2 λGtz-calculus

In this section, we briefly recall untyped and simply typed λGtz-calculus. For a
detailed account on λGtz we refer the reader to [4].

The abstract syntax of λGtz is given by:

Terms t ::= x |λx.t | tk
Contexts k ::= x̂.t | t :: k

A term (denoted by t, u, v,...) is either a variable, an abstraction or an application
tk, called cut. A context (denoted by k, k′,...) is either a selection x̂.t, in which
the variable x is bound, or a context constructor t :: k, usually called cons. The
terms and the contexts together are called expressions and denoted by E.

The reduction rules of λGtz are the following:

(β) (λx.t)(u :: k)→ u(x̂.tk)
(π) (tk)k′ → t(k@k′)
(σ) t(x̂.v)→ v[x := t]
(µ) x̂.xk → k, if x /∈ k

where v[x := t] denotes meta-substitution defined in the usual way, and meta-
operator k@k′, called append, is defined by:

(u :: k)@k′ = u :: (k@k′); (x̂.t)@k′ = x̂.tk′.

Normal forms of λGtz-calculus are expressions that contain no cuts but the
trivial ones.

tnf ::= x |λx.tnf |x(tnf :: knf )
knf ::= x̂.tnf | tnf :: knf

The type assignment system with simple types, called λGtz → is presented in
the Figure 1. A basis Γ is a set {x1 : A1, . . . , xn : An} of basic type assignments,
where all term variables are different. DomΓ = {x1, . . . , xn}. A basis extension
Γ, x : A denotes the set Γ ∪ {x : A}, where x 6∈ DomΓ. There are two sorts
of sequents in this system: Γ ` t : A - for typing a term, and Γ ; B ` k : A -
for typing a context. The special place after the semi-comma on the LHS of the
sequent is called stoup. It contains the selected formula with which we continue
computation.
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Although λGtz satisfies many good properties (like subject reduction and
strong normalization of the simply typed version, characterization of strong nor-
malization of the system with intersection types, preservation of β-SN...see [4])
it does not enjoy the confluence, unlike majority of intuitionistic formal calculi.
The reason for non-confluence is the existence of a critical pair, consisting of π
and σ reductions.

(Ax)
Γ, x : A ` x : A

Γ, x : A ` t : B
(→R)

Γ ` λx.t : A→ B

Γ ` t : A Γ ; B ` k : C
(→L)

Γ ; A→ B ` t :: k : C

Γ, x : A ` t : B
(Sel)

Γ ; A ` x̂.t : B

Γ ` t : A Γ ; A ` k : B
(Cut)

Γ ` tk : B

Figure 1: λGtz → - simply typed λGtz

Example 1. The term of the form (tk)(x̂.v) is both a π-redex and a σ-redex.
Contracting it as a π-redex (the call-by-value option) we get t(k@x̂.v). Con-
tracting it as a σ redex (the call-by-name option) we get v[x := tk], and in a lot
of particular cases these two terms can not be reduced to the same normal form.

3 Confluent sub-calculi

In this section, we propose two calculi derived from λGtz-calculus that do enjoy
the confluence property. As already mentioned, our goal is to eliminate the crit-
ical pair, and we achieve it by restricting some reduction rules of λGtz. These
restrictions are made by modifications of the syntax.

Look at the previous example. If we forbid σ reduction to perform on the
term (tk)(x̂.v), we will get a ”call-by-value” sub-calculus, denoted by λGtz

V . The
abstract syntax of λGtz

V is the following:

Values T ::= x |λx.t
Terms t ::= T | tk
Contexts k ::= x̂.t | t :: k

So, like in [1], we introduce values as a new syntactic category. Reduction rules
of λGtz

V are β, π, µ of λGtz and

(σV ) T (x̂.v)→ v[x := T ].

This reduction system is forcing us to reduce the head of the cut to the value
before substituting it instead of x in v, which is exactly the essence of the call-
by-value computational strategy.
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On the other hand, if we forbid π reduction to perform on the term (tk)(x̂.v),
we will get another confluent sub-calculus, denoted by λGtz

L . The abstract syntax
of λGtz

L is the following:

Terms t ::= x |λx.t | tk
Lists l ::= x̂.x | t :: k
Contexts k ::= l | x̂.t

Here, we have to introduce syntactic category of lists, that are subset of the
contexts and whose form is t1 :: t2 :: ... :: tk :: x̂.x. The trivial selection, x̂.x,
actually represents an empty list [ ], so by applying this convention we can write
the upper list in the form [t1, t2, ..., tk]. Reduction rules of λGtz

L are β, σ, µ of
λGtz and

(πL) (tk)l→ t(k@l).

In this reduction system, only the term of the form (tk)(x̂.x) is at the same time
σ-redex and (πL)-redex, but applying each of these two reductions leads to the
same result - tk, so the confluence is not broken.

3.1 The proof of the confluence

After elimination of the critical pair, we can prove the confluence of the λGtz
V -

calculus.

Definition 1 (Confluence, Church-Rosser property). Reduction R is said
to be confluent if its reflexive and transitive closure→→R satisfies so-called diamond-
property i.e. if for all terms t, t1, t2 the following holds:

if t1 ´ t ³ t2, then there exists t′ such that t1 ³ t′ ´ t2.

The technique we use for proving this property is the parallel reductions tech-
nique, developed by Takahashi [8] and adapted by Likavec [6] for proving Church-
Rosser property of the λµµ̃ sub-calculi. This approach is based on simultaneous
reduction of all existing redexes in the term. In the sequel, → will denote the
union of all four λGtz

L reductions and →→ will denote its reflexive and transitive
closure.

First, we need to introduce the notion of the parallel reductions for λGtz
V -

calculus, denoted by ⇒ and defined inductively as follows:

Definition 2 (Parallel reductions for λGtz
V -calculus).

x⇒x (g1)
t⇒ t′

λx.t⇒λx.t′
(g2)

t⇒ t′, k⇒ k′

tk⇒ t′k′
(g3)

t⇒ t′

x̂.t⇒ x̂.t′
(g4)

t⇒ t′, k⇒ k′

t :: k⇒ t′ :: k′
(g5)
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t⇒ t′, u⇒u′, k⇒ k′

(λx.t)(u :: k)⇒u′x̂.(t′k′)
(g6)

T ⇒T ′, t⇒ t′

T (x̂.t)⇒ t′[x := T ′]
(g7)

t⇒ t′, k⇒ k′, k1⇒ k′1
(tk)k1⇒ t′(k′@k′1)

(g8) k⇒ k′

x̂.xk⇒ k′
(g9)

Lemma 1 (Reflexivity). For every expression E, E⇒E.

Proof. By induction on the structure of E. The basic case is covered by the rule
(g1) from definition 2. In all other cases, we apply IH on subexpressions of E
and rules (g2) - (g5). ut

Lemma 2 (Substitution). If x 6= y and x 6∈ FV (v2) then E[x := v1][y :=
v2] = E[y := v2][x := v1[y := v2]].

Proof. By induction on the structure of E. The basic case is when E is the
variable. There are three possibilities:

• E ≡ x.
Then, x[x := v1][y := v2] = v1[y := v2] and x[y := v2][x := v1[y := v2]]
= x[x := v1[y := v2]] = v1[y := v2].

• E ≡ y.
Then, y[x := v1][y := v2] = y[y := v2] = v2 and y[y := v2][x := v1[y := v2]]
= v2[x := v1[y := v2]] = v2, because x 6∈ FV (v2).

• E ≡ z, such that z 6= x and z 6= y.
Then both sides are equal to z.

In all other cases, we apply IH on subexpressions of E. ut

Now we give the definition of holes.

Definition 3 (Holes).

Ct ::= [ ] | λx.Ct | tCc | Ctk
Cc ::= x̂.Ct | t :: Cc | Ct :: k

We will write C instead Ct ∪ Cc. C[G] denotes filling the hole in C with an
expression G. Now we can prove the following statement.

Lemma 3.

(i) If E→E′ then E⇒E′.
(ii) If E⇒E′ then E→→E′.
(iii) If E⇒E′ and H⇒H ′, then

E[x := H]⇒E′[x := H ′].

Proof. (i) By induction on the sort of the hole in redex. If E→E′ then E =
C[H], E′ = C[H ′] and H→H ′.
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• The basic case is C ≡ [ ].
There are four possible cases of reductions in H→H ′.

β-reduction - then H ≡ (λx.t)(u :: k) and H ′ ≡ u(x̂.tk). By lemma 1
t⇒ t, u⇒u and k⇒ k, so from rule (g6) of definition 2 H⇒H ′,
hence E⇒E′.
σ-reduction - then H ≡ T x̂.v and H ′ ≡ v[x := T ]. By lemma 1
T ⇒T and v⇒ v, so from rule (g7) we have that H⇒H ′.
π-reduction - then H ≡ (tk)k′ and H ′ ≡ tk@k′. By lemma 1 t⇒ t,
k⇒ k and k′⇒ k′, so from rule (g8) H⇒H ′.
µ-reduction - then H ≡ x̂.xk and H ′ ≡ k. By lemma 1 k⇒ k, so
from rule (g9) H⇒H ′.

• C ≡ λx.C′.
Then E ≡ λx.C′[H] and E′ ≡ λx.C′[H ′]. By IH we have C′[H]⇒C′[H ′],
so from rule (g2) of definition 2 we get E⇒E′.

• C ≡ t C′.
Then E ≡ t C′[H] and E′ ≡ t C′[H ′]. By IH we have C′[H]⇒C′[H ′], from
lemma 1 we have t⇒ t so from rule (g3) of definition 2 we get E⇒E′.
The proof is similar for the rest of sorts of the hole.

(ii) By induction on the definition of the parallel reduction. We show several
cases, the others are proved similarly.
• Basic case is E ≡ x⇒x ≡ E′.

In that case, E ≡ x→→x ≡ E′ is trivially satisfied.
• E ≡ tk⇒ t′k′ ≡ E′.

This is the direct consequence of the premises t⇒ t′ and k⇒ k′. By IH,
t→→ t′ and k→→ k′, hence

E ≡ tk→→ t′k′ ≡ E′.

• E ≡ (λx.t)(u :: k)⇒u′(x̂.t′k′) ≡ E′.
This is the direct consequence of the premises t⇒ t′, u⇒u′ and k⇒ k′.
By IH, t→→ t′, u→→u′ and k→→ k′, hence

E ≡ (λx.t)(u :: k)→u(x̂.tk)→→u′(x̂.t′k′) ≡ E′.

(iii) By induction on the definition of the parallel reduction.
• The first basic case is E ≡ x⇒x ≡ E′.

Then E[x := H] ≡ x[x := H] = H⇒H ′ = x[x := H ′] ≡ E′[x := H ′],
which is given in assumptions.

• The second basic case is E ≡ y⇒ y ≡ E′, y 6= x.
Then E[x := H] ≡ y[x := H] = y⇒ y = y[x := H ′] ≡ E′[x := H ′], by
rule (g1) of definition 2.

• E ≡ λy.t⇒λy.t′ ≡ E′.
This follows from the premise t⇒ t′, so applying IH we get t[x :=
H]⇒ t′[x := H ′]. From this, by rule (g2) and the substitution defini-
tion we get

E[x := H] ≡ λy.t[x := H]⇒λy.t′[x := H ′] ≡ E′[x := H ′].
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• E ≡ tk⇒ t′k′ ≡ E′.
Premises of this statement are t⇒ t′ and k⇒ k′. Applying IH on both of
them we get t[x := H]⇒ t′[x := H ′] and k[x := H]⇒ k′[x := H ′]. Now
we derive

E[x := H] ≡ (tk)[x := H] = t[x := H]k[x := H]
⇒ t′[x := H ′]k′[x := H ′] = (t′k′)[x := H ′]
≡ E′[x := H ′],

using the substitution definition and rule (g3) of definition 2.
• E ≡ ŷ.t⇒ ŷ.t′ ≡ E′.

The direct premise of the statement is t⇒ t′, so applying IH on it we
get t[x := H]⇒ t′[x := H ′]. From this, by rule (g4) and the substitution
definition follows

E[x := H] ≡ ŷ.t[x := H]⇒ ŷ.t′[x := H ′] ≡ E′[x := H ′].

• E ≡ t :: k⇒ t′ :: k′ ≡ E′.
The statement follows from premises t⇒ t′ and k⇒ k′. Applying IH on
both of them we get t[x := H]⇒ t′[x := H ′] and k[x := H]⇒ k′[x := H ′],
yielding

E[x := H] ≡ (t :: k)[x := H]
= t[x := H] :: k[x := H]
⇒ t′[x := H ′] :: k′[x := H ′]
= (t′ :: k′)[x := H ′]
≡ E′[x := H ′],

by the substitution definition and rule (g5) of definition 2.
• E ≡ (λy.t)(u :: k)⇒u′ŷ.(t′k′) ≡ E′.

Direct premises of this statement are t⇒ t′, u⇒u′ and k⇒ k′. By IH
we have t[x := H]⇒ t′[x := H ′], u[x := H]⇒u′[x := H ′] and k[x :=
H]⇒ k′[x := H ′]. Now,

E[x := H] ≡ ((λy.t)(u :: k))[x := H]
= (λy.t)[x := H](u[x := H] :: k[x := H])
⇒ u′[x := H ′]ŷ.(t′[x := H ′]k′[x := H ′])
≡ E′[x := H ′],

using rule (g6) of definition 2.
• E ≡ T ŷ.u⇒u′[y := T ′] ≡ E′.

This is the consequence of the premises t⇒ t′ and u⇒u′. By IH we
get t[x := H]⇒ t′[x := H ′] and u[x := H]⇒u′[x := H ′], so applying
lemma 2 we derive

E[x := H] ≡ (T ŷ.u)[x := H]
= T [x := H]ŷ.u[x := H]
⇒ u′[x := H ′][y := T ′[x := H ′]]
= u′[y := T ′][x := H ′]
≡ E′[x := H ′],

using rule (g7) of definition 2.



70 Jelena Ivetić

• E ≡ (tk)k1⇒ t′(k′@k′1) ≡ E′.
The statement follows from the premises t⇒ t′, k⇒ k′ and k1⇒ k′1. By
IH we get t[x := H]⇒ t′[x := H ′], k[x := H]⇒ k′[x := H ′] and k1[x :=
H]⇒ k′1[x := H ′]. Now, from rule (g8) of definition 2, we conclude

G[x := H] ≡ ((tk)k1)[x := H]
= (t[x := H]k[x := H])k1[x := H]
⇒ t′[x := H ′](k′[x := H ′]@k′1[x := H ′])
≡ G′[x := H ′].

• E ≡ x̂.xk⇒ k′ ≡ E′.
The statement follows from the premise k⇒ k′. By IH we get k[x :=
H]⇒ k′[x := H ′], and then from rule (g9) of definition 2 we conclude

E[x := H] ≡ (x̂.xk)[x := H]
= x̂.xk[x := H]
⇒ k′[x := H ′]
≡ E′[x := H ′],

so the proof is done. ut

Expression E∗, introduced in the following definition, is obtained from E by
simultaneous reducing of all existing redexes of E.

Definition 4. Expression E∗ is inductively defined as follows:

(∗1) x∗ ≡ x
(∗2) (λx.t)∗ ≡ λx.t∗

(∗3) (x̂.t)∗ ≡ x̂.t∗

(∗4) (t :: k)∗ ≡ t∗ :: k∗

(∗5) (tk)∗ ≡ t∗k∗ if tk 6= (λx.v)(u :: k1) and tk 6= T (x̂.v) and tk 6= (uk1)k2

(∗6) ((λx.t)(u :: k))∗ ≡ u∗(x̂.t∗k∗)
(∗7) (T (x̂.v))∗ ≡ v∗[x := T ∗]
(∗8) ((tk)k1)∗ ≡ t∗(k∗@k∗1).

Theorem 1 (Star-property of ⇒). If E⇒E′, then E′⇒E∗.

Proof. By induction of the structure of E. We are proving several cases, the rest
are similar.

• E ≡ x.
E can be only reduced in parallel to itself ie. E′ ≡ x. On the other hand,
E∗ ≡ x.

• E ≡ x̂.t.
Then E′ ≡ x̂.t′ for some t′ such that t⇒ t′. By IH, we get t′⇒ t∗, yielding
E′ ≡ x̂.t′⇒ x̂.t∗ ≡ E∗.

• E ≡ tk and E 6= (λx.v)(u :: k) and E 6= T (x̂.v) and E 6= (uk1)k2.
In that case, applying (g7) we get E⇒ t′k′ for some t′ and k′ such that t⇒ t′

and k⇒ k′. By IH, t′⇒ t∗ and k′⇒ k∗, so we have E′ ≡ t′k′⇒ t∗k∗ ≡ E∗.
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• E ≡ (λx.t)(u :: k).
Now there are two options for the structure of E′, because E can be reduced
in parallel by rules (g3) and (g6).
1. E′ ≡ (λx.t′)(u′ :: k′) for some t′, u′ and k′ such that t⇒ t′, u⇒u′

and k⇒ k′. Applying IH on each of the three subexpressions, we get
t′⇒ t∗, u′⇒u∗ and k′⇒ k∗. Finally, from (∗6) we get E′ ≡ (λx.t′)(u′ ::
k′)⇒u∗x̂.t∗k∗ ≡ E∗.

2. E′ = u′x̂.t′k′ for some t′, u′ and k′ such that t⇒ t′, u⇒u′ and k⇒ k′.
Applying IH on each of the three subexpressions, we again get t′⇒ t∗,
u′⇒u∗ and k′⇒ k∗. The statement now holds from rules (∗3) and (∗5).

• G ≡ T x̂.v.
Also in this case there are two options for the structure of E′, because E
can be reduced in parallel by rules (g3) and (g7).
1. E′ ≡ T ′x̂.v′ for some T ′ and v′ such that T ⇒T ′ and v⇒ v′. By IH on

both subexpressions we get T ′⇒T ∗ and v′⇒ v∗. Finally, from (∗7) we
get E′ ≡ T ′x̂.v′⇒ v∗[x := T ∗] ≡ E∗.

2. E′ = v′[x := T ′] for some T ′ and v′ such that T ⇒T ′ and v⇒ v′. By IH
on both subexpressions we get T ′⇒T ∗ and v′⇒ v∗. Proposition 3 yields
to E′ ≡ v′[x := T ′]⇒ v∗[x := T ∗] ≡ E∗. ut

Now, it is easy to prove diamond-property for ⇒.

Theorem 2 (Diamond-property for ⇒).
If E1⇐E⇒E2 then E1⇒E′⇐E2 for some E′.

Finally, as a consequence of the previous Theorem 2, we obtain confluence
of the λGtz

V -calculus.

Theorem 3 (Confluence of the λGtz
V -calculus).

If E1←←E→→E2 then E1→→E′←←E2 for some E′.

Remark 1. When definitions of the parallel reductions, holes and E∗ are changed
in accordance to the syntax and reductions rules of λGtz

L -calculus, the proof of
the confluence of the other λGtz sub-calculus is analogous to the one above.

4 Discussion and future work

If we compare λGtz-calculus with λGtz
V -calculus and λGtz

L -calculus, it is easy to
observe several things. First, the sets of λGtz-terms, λGtz

V -terms and λGtz
L -terms are

equal. Second, simple types can be assigned to both new calculi with the typing
rules that coincide with the rules of simply typed λGtz, presented in Figure 1. It
means that the sets of typeable terms in λGtz, λGtz

V and λGtz
L are equal, moreover,

each term has the same type in all three calculi. Third, the sets of normal forms
are also equal in all three calculi, since there isn’t any term that is reducible in
one of the calculi, and not so in the other two (only the number of reduction paths
differs). Having in mind these facts, it is obvious that the subject reduction and
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the strong normalization properties of simply typed λGtz-calculus are preserved
in simply typed λGtz

V and λGtz
L calculi.

Introducing intersection types and searching for the way of characterizing
strongly normalizing terms is still in the domain of future work, as well as ex-
ploring relations between λGtz

V -calculus and λGtz
L -calculus on the one side, and

well known term calculi like ”call-by-value” λ-calculus or confluent sub-calculi
of λµµ̃-calculus on the other side.
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ing intuitionistic sequent terms. In International Workshop TYPES 07 (Selected
Papers), volume 4941 of LNCS, pages 8599. Springer-Verlag, 2008.

5. Herbelin, H.: A lambda calculus structure isomorphic to Gentzen-style sequent
calculus structure. In Computer Science Logic, CSL 1994, volume 933 of LNCS,
pages 6175. Springer- Verlag, 1995.

6. Likavec, S.: Types for object-oriented and functional programming languages. PhD
thesis. Universita degli studi di Torino, Torino (2004).

7. Rose, K.: Explicit substitutions: Tutorial and survey. Technical Report LS-96-3,
BRICS, 1996.

8. Takahashi, M.: Parallel reduction in lambda calculus. In Information and Compu-
tation, Vol. 118. Academic press (1995) 120–127.



SAT-based Model Checking of
Train Control Systems

Phillip James? and Markus Roggenbach??

Swansea University, Swansea, Wales, UK
cspj@swansea.ac.uk, csmarkus@swansea.ac.uk

Abstract. In this paper, we demonstrate the successful application of
various SAT-based model checking techniques to verify train control sys-
tems. Starting with a propositional model for a control system, we show
how execution of the system can be modelled via a finite automaton.
We give algorithms to perform SAT-based model checking over such an
automaton. In order to tackle state space explosion we propose slicing.
Finally we comment on results obtained by applying these methods to
verify two real world railway interlocking systems.

1 Introduction

Formal verification of railway control software has been identified to be one of the
“grand challenges” [12] of Computer Science. Various formal methods have been
applied to this area, including algebraic specification, e.g., [7], process algebraic
modelling and verification, e.g., [19], and also model oriented specification, where
e.g., the B method has been used in order to verify part of the Paris Metro
railway [8]. In partnership with Invensys, an internationally established company
specialising in railway control systems, we explore various verification approaches
based on SAT solving [6].

Continuing work by Kanso et al. [16] we verify interlockings of real world train
stations with respect to safety conditions. Our modelling language is proposi-
tional logic, see Figure 1: The physical layout of the train station together with an
abstract safety condition, e.g., ‘trains are separated by at least one empty track
segment’, yields a concrete safety condition ϕ. The initial configuration of a train
station is characterised by some initialisation formula I. The control program (in
ladder logic, an ISO standard [1]) of the interlocking system is translated into a
transition formula T . All the above translations have been automated in [16]. Us-
ing an inductive approach, namely I(Z) ⇒ ϕ(Z) and T (Z,Z ′) ∧ ϕ(Z) ⇒ ϕ(Z ′),
Kanso et al [16] successfully verify a medium sized real world interlocking. Some
of the required safety properties are automatically proven using a SAT solver
[17]. However, in some cases the SAT solver produces counter examples. These
take the from of one pair of states, namely interpretations of Z and Z ′, which vio-
late the safety property. In the context of the interlocking under discussion, these
? Acknowledging the support of Westinghouse Rail.
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Fig. 1. The basic verification setting.

counter examples were excluded via manual analysis: it was claimed that they
concern unreachable states. For inclusion into the standard development process
of interlockings, Invensys requires further automation of the verification, namely

– the exclusion of unreachable states and
– the production of error traces if a safety property does not hold.

In order to accommodate these requirements, we develop and experiment
with verification approaches based on ideas used in bounded model checking.
Here, we deliberately stay within Boolean modelling: first, it is natural in the
given context – the ladder logic program speaks on Boolean variables only; sec-
ond, it allows the direct use of SAT solvers for verification.

In order to deal with real world interlockings, we develop a slicing technique.
To this end we re-use an algorithm first stated by [11] and prove that it is
correct w.r.t. our specific setting. In practice, slicing reduces the problem size
by approximately a factor of five. This reduction has proven to be enough to
verify, using various techniques, two interlockings of medium complexity: either
the safety condition could be proven, or an error trace was produced.

In [20, 11] alternative approaches for the verification of ladder logic programs
are provided. In [20] a translation form ladder logic into timed automata is
defined, before using the Uppaal model checker [2] for verification. Due to state
space explosion their approach is limited to “small” programs. Secondly, in [11]
an inductive verification approach is taken to verify ladder logic interlockings.

This paper is organised as follows: In Section 2, we introduce the basics
behind railway interlockings. Section 3 introduces a pelican crossing as a small
example system. In Sections 4 and 5 we give a modelling of interlockings through
propositional logic and automata. Section 6 introduces the model checking ap-
proaches we apply, with Section 7 giving a method to tackle state space explosion.
Finally, Section 8 shows the results gained from the verification of two real world
interlockings.
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2 Interlockings

An interlocking provides a safety layer for a railway. It interfaces with both the
physical track layout and the human (or computerised) controller. The controller
issues requests, such as to move a point. On such a request the interlocking will
determine whether it is safe for the operation to be permitted. If it is safe then
the interlocking will change the physical track layout, informing the controller
of the change. Whereas if it is unsafe to perform the operation the interlocking
will not allow the physical track layout to be changed, and will report back to
the controller that the operation has not taken place as it would yield an unsafe
situation.

Here, we consider Westrace [3] interlockings. A Westrace interlocking has the
typical control flow of a controller:

initialise
while True do

read (Input)
(*) process (Input, State)

write (Output) & update (State)

After initialisation, there is a loop which consists of three steps, which are re-
peated indefinitely in this order: (1) Reading of Input, where Input includes
requests from signallers and data from physical track sensors. (2) Internal pro-
cessing: this depends on the Input as well as on the current State of the con-
troller. (3) Committing of Output, which includes passing information back to
the signaller, commands to change the physical track layout, as well as an up-
date of the State of the controller. The step initialise consists of the following
three steps:

set_to_false (Input)
process (Input, State)
update(State)

First, all Input is set to false, then the step process is executed once, finally
State is updated.

The Westrace interlocking realises this controller in hardware (cycle time of
approximately 1 sec), where the steps initialise and process depend on the
installed control software written in ladder logic – see below.

Input, Output, and State are sets of Boolean variables. The set Output is a
subset of State. The process step depends on the current configuration of the
controller, namely on the values of all variables in the sets Input and State.

3 Pelican crossing example

As a running example we study a pelican crossing, as it is found on many road
networks throughout the world. The basic idea is that a pelican crossing allows
pedestrians to safely cross a flow of traffic. To this end, a pelican crossing consists
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of the following components: four traffic lights - two for pedestrians, two for the
traffic, where for simplicity we assume that all these traffic lights can only show
red or green. The pedestrians traffic lights emit an audio signal when they show
green and have an input button which a pedestrian can press in order to request
the green signal.

In order to program our system, we use the following Boolean variables,
distinguished into input, output, and state variables. There is only one input
variable, namely pressed. This variable becomes true if a pedestrian presses the
button at either pedestrian light. We use the suffix g to indicate that a traffic
light shows green, and the suffix r to indicate that a traffic light shows red.
There are four traffic lights, namely pla and plb for pedestrians, and tla and tlb
for traffic. Thus, overall there are eight output variables for lights, namely pla g,
pla r, plb g, plb r, tla g, tla r, tlb g, and tlb r. When one of these variable is true,
the corresponding light is on. There is one output variable audio. When audio
is true then the audio signal is sounding. Finally there are two state variables,
req which “remembers” the value of pressed, and crossing which indicates that
pedestrians may cross the road.

[ crossing′ ⇐⇒ (req ∧ ¬crossing),
req′ ⇐⇒ (pressed ∧ ¬req),
tla g′ ⇐⇒ ((¬crossing′) ∧ (¬pressed ∨ req′)),
tlb g′ ⇐⇒ ((¬crossing′) ∧ (¬pressed ∨ req′)),
tla r′ ⇐⇒ crossing′,
tlb r′ ⇐⇒ crossing′,
pla g′ ⇐⇒ crossing′,
plb g′ ⇐⇒ crossing′,
pla r′ ⇐⇒ (¬crossing′),
plb r′ ⇐⇒ (¬crossing′),
audio′ ⇐⇒ crossing′ ]

Fig. 2. A ladder logic formula.

Figure 2 presents the control program of our pelican crossing. It uses un-
primed variables to store the configuration of the controller before the step
process. Primed variables store the values of state variables after the step
process. As only process alters State variables, we can also say: if the un-
primed variables represent the configuration at (*), then the primed variables
represent the configuration at (*) in the next cycle of the control loop.

The first line of Figure 2, namely “crossing′ ⇐⇒ (req∧¬crossing)”, can be
read as: if there was a request req and in the last control cycle the pedestrians
were not allowed to cross the road, then at the end of the current cycle pedestri-
ans will be allowed to cross the road. Its second line says: In the next cycle req
will be true if a pedestrian pressed the button before starting this cycle (indi-
cated by pressed) and in the previous cycle there was no request. The remainder
of the program can be read similarly.
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4 Ladder logic formulae

Ladder logic is graphical programming language specified in the IEC standard
61131 [1]. Westrace interlockings are programmed with ladder logic. A ladder
logic program can be equivalently translated into a subset of propositional logic.
We call this subset the ladder logic formulae (see below for its definition). This
translation is straight forward: it simply replaces graphical symbols by logical
operators, a process which has been automated in [15]1. For the rest of the
paper we only deal with this representation in propositional logic. Figure 2 gives
a concrete instance using a practical shorthand notation.

Ladder logic formulae have several underlying syntactical restrictions. These
restrictions become important in the context of slicing. In order to describe
their syntax we use the following notations: The function vars returns for a
given propositional formula ϕ the set of propositional variables appearing in ϕ.
We use “prime” to generate a fresh variable. V ′ = {v′ | v ∈ V } denotes the set
of all fresh variables obtained from a set of variables V .

A ladder logic program is formulated relatively to a finite set of input vari-
ables I and a finite set of state variables C, such that I ∩ C = ∅. It may also
refer to primed state variables C ′, which represent the newly computed values
within a control cycle.

Definition 1 (Ladder logic formulae). A ladder logic formula ψ (relative
to a set of input variables I and a set of state variables C) is a propositional
formula

ψ ≡ ((c′1 ⇔ ψ1) ∧ (c′2 ⇔ ψ2) ∧ · · · ∧ (c′n ⇔ ψn))

where n ≥ 0 and the ψi, 1 ≤ i ≤ n, are propositional formulae, such that the
following conditions hold:

– for all 1 ≤ i ≤ n : c′i ∈ C ′.
– for all 1 ≤ i, j ≤ n : if i 6= j ⇒ c′i 6= c′j.
– for all 1 ≤ i ≤ n : vars(ψi) ⊆ I ∪ {c′1, . . . c′i−1} ∪ {ci, . . . cn}.

If n = 0, as usual ψ ≡ True. The empty program proves to be useful in the
context of slicing.

A ladder logic program prescribes the computation that takes place in the
step process of the control loop. The equivalence (⇔) can be interpreted as
assignment. The above conditions ensure that only primed state variables can
be assigned to; a primed state variable is assigned to at most once; a primed
state variable can only depend on input variables, primed state variables, or
state variables – where “double use” is avoided: i.e., either the unprimed or the
primed version of a state variable can be used, depending on the index i.

For a ladder logic formula we often write ψ ≡ [R1, R2, . . . , Rn] where Ri ≡
c′i ⇔ ψi, for 1 ≤ i ≤ n, for some n ≥ 0. The subformulae Ri are called rungs.

1 A similar modelling approach has been taken in [11].
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5 Representation of an interlocking as an automaton

We capture the dynamics of a Westrace interlocking by defining an automaton
relative to a given ladder logic formula. Consider the control loop in Section 2: a
state in the automaton represents a configuration of the controller; a transition
s → s′ represents one execution of the loop. That is, if q represents the config-
uration of the controller at (*), then q′ represents the configuration at (*) one
cycle later.

In order to define the transition relation via ladder logic formulae, we define
paired valuations. In the definition we use I ′ to represent new inputs to the
controller and the function unprime to remove the prime from a variable.

Definition 2 (Paired valuations). Given a finite set of input variables I, a
finite set of state variables C, and valuations µ, µ′ : (I ∪ C) → {0, 1} we define
the paired valuation µ ;µ′ : (I ∪ C ∪ I ′ ∪ C ′) → {0, 1} where

µ ;µ′(x) =

{
µ(x) if x ∈ I ∪ C
µ′(unprime(x)) if x ∈ I ′ ∪ C ′.

We now define an automaton for a ladder logic formula:

Definition 3 (Automaton). Given a ladder logic formula ψ over I ∪ C, we
define the automaton

A(ψ) = (S, S0,→)

where

– S = {µ |µ : I ∪ C → {0, 1}} is the set of states,
– µ→ µ′ if µ ;µ′ |= ψ defines the transitions, and
– S0 = {µ′ | ∃µ : µ |= ¬I, µ ;µ′ |= ψ} gives the set of initial states.

Here, ¬I expands to
∧

i∈I ¬i for all i ∈ I.

Remark 1. The automaton A(ψ) is non deterministic as ψ does not impose any
conditions on the variables in I ′: The controller is not allowed to refuse any input.
Yet another potential source of non determinism is that a state variable c′ might
not appear on the left hand side of the rungs of ψ. Finally, the automaton might
have more than one start state. The automaton A(ψ) is finite; it has 2|I∪C|

states.

This automaton faithfully models the behaviour of the interlocking. The set
of initial states S0 of the automaton represents all possible configurations of
the interlocking when reaching point (*) for the first time. As one transition
corresponds to one execution of a loop, the traces of configurations observed at
(*) directly correspond to the state sequences of the automaton.

Naturally, a controller shall never stop. In our formalisation of a Westrace
interlocking we can prove this a theorem:

Theorem 1. Let ψ be a ladder logic formula. Let µ be a state in A(ψ). Then
there exists a state µ′ such that µ ;µ′ |= ψ, i.e. it holds that µ→ µ′.
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Proof. (Sketch) By induction on size n of a ladder logic formula. Assume the
claim holds for length i. Given an evaluation µi for Vi = I ∪ {c′1, . . . , c′i−1} ∪
{ci, . . . , cn} we set µi+1(x) = µ(x) for x ∈ Vi, µi+1(c′i+1) = 1 if µi |= ψi+1 and
µi+1(c′i+1) = 0 if µi 6|= ψi+1.

We say that a paired valuation µ ;µ′ is reachable with respect to an automa-
ton A(ψ) = (S, S0,→), if there exists a series of transitions µ0 → µ1 → · · · →
µ→ µ′ with µ0 ∈ S0.

Figure 3 illustrates the reachable states of the automaton constructed from
the pelican crossing ladder logic formula in Figure 2. Here, initial states are
represented via double circles, and some variable values have been excluded.

Fig. 3. An automaton modelling of the ladder logic program for a pelican crossing.

5.1 Safety conditions

A typical safety property in our pelican crossing example would be: “A traf-
fic light always shows a single aspect”. Using the vocabulary for the control
program, we capture this property by the following propositional formula:

SingleAspect ≡ (tla g ∨ tla r) ∧ ¬(tla g ∧ tla r) ∧ (tlb g ∨ tlb r) ∧ ¬(tlb g ∧ tlb r).

I.e., for both traffic lights, namely tla and tlb, the following holds: either their
signal is green g or their signal is red r.

Verification practice with Westrace interlockings has shown that the arising
safety properties speak about at most two consecutive configurations at (*)
of the control program depicted in Section 2. (The above example speaks only
about one configuration.) This justifies the following definition:

Definition 4 (Safety condition). A safety condition ϕ for a ladder logic for-
mula ψ over variables I ∪C is a propositional formula over variables I ∪C ∪C ′.

In this definition we exclude variables from the set I ′ as the controller has no
effect on any input values.
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5.2 The verification problem

With these notions at hand we can state our verification problem: Given a ladder
logic formula ψ and a safety condition ϕ, we say that ψ is safe w.r.t. ϕ,

A(ψ) |= ϕ,

iff µ ;µ′ |= ϕ for all reachable paired valuations µ ;µ′ in A(ψ).
The exclusion of non-reachable states from the verification problem is mo-

tivated by the verification results by [16] – see Section 1 – and comes as a
direct request from industry. Our Pelican crossing program is safe w.r.t. Sin-
gleAspect only thanks to the exclusion of non-reachable states. Let µ, µ′ and
µ′′ be states with µ = {crossing = 1, req = 1, pressed = 1, tla g = 1, tlb g =
1, tla r = 0, tlb r = 0, pla g = 0, plb g = 0, pla r = 1, plb r = 1, audio=0},
µ′ = {crossing = 0, req = 0, pressed = 0, tla g = 0, tlb g = 0, tla r = 0, tlb r =
0, pla g = 0, plb g = 0, pla r = 1, plb r = 1, audio=0} and µ′′ any arbitrary
successor of µ′ (its existence is guaranteed by Theorem 1). µ;µ′ is not reachable,
see Figure 3. µ ;µ′ is safe, i.e. µ ;µ′ |= SingleAspect, there is a transition from µ′

to µ′′, however, µ′ ;µ′′ is not safe, i.e. µ′ ;µ′′ 6|= SingleAspect.
It is obvious how to extend our setting to safety properties that involve k > 2

configurations of the interlocking: instead of paired valuations one has to define
k-tuples of valuations; a safety property ϕ can speak about k different copies of
each variable in I∪C; and ψ is safe if all reachable k-tuples of consecutive states
satisfy the safety condition ϕ.

6 Applying model checking to ladder logic

In this section we discuss two verification techniques: bounded model checking [5]
and temporal induction [18], both based on SAT solving. Thus, we have to give
a representation of the state sequences of the automaton under consideration.

6.1 Representing state sequences

Given a set I of input variables and a set C of state variables, we define variable
sets Wi = C(i) ∪ I(i) with C(i) = {c(i) | c ∈ C} and I(i) = {x(i) |x ∈ I} for
i ∈ Z. Here we use the superscript (i) to produce fresh variables. We write
[Wi/(I ∪ C)] to denote the substitution where all superscripts are removed,
and [Wi+1/(I ′ ∪ C ′)] for the substitution where all superscripts are replaced by
primes. A sequence W0,W1,W2, . . . of these variable sets is capable to “store”
a state sequence of an automaton A(ψ):

Definition 5 (Series of transitions). Let ψ be a ladder logic formula. We
define the propositional formulae

Init ≡ (
∧

i∈I(−1)

¬i) ∧ T (W−1,W0) Tn ≡
∧

0≤i≤n−1

T (Wi,Wi+1)

where n ≥ 0 and T (Wi,Wi+1) ≡ ψ [Wi/(I ∪ C)][Wi+1/(I ′ ∪ C ′)].
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Given a ladder logic formula ψ, then the formula Init∧Tn is “satisfied” exactly by
all state sequences s0, s1, . . . , sn of A(ψ). More formally: Given a state sequence
s0, s1, . . . , sn we construct an valuation µ : W−1∪W0∪· · ·∪Wn → {1, 0}, where
state sj gives the interpretation of Wj for 0 ≤ j ≤ n, i.e. µ(i(j)) = sj(i), i ∈ I,
and µ(c(j)) = sj(c), c ∈ C; µ(i(−1)) = 0, i ∈ I, and µ(c(−1)) such that we reach
s0 via ψ. For this µ holds: µ |= Init∧Tn. Conversely, given a µ with µ |= Init∧Tn

one can decompose it to a state sequences s0, s1, . . . , sn of A(ψ).
With these notations in place we can define safety at a specific point in a

sequence W0,W1,W2, . . .

Definition 6 (Safety at step n). Let ϕ be a safety condition for a ladder logic
formula ψ. We define the propositional formula

ϕn ≡ ϕ [Wn−1/(I ∪ C)][Wn/(I ′ ∪ C ′)],

where n > 0.

6.2 Bounded model checking

Widely used within industrial applications [9, 4], bounded model checking re-
stricts the search space by a bound which states how many transitions of the
automaton should maximally be considered for the verification process. Using
the formulae

Initial ≡ Init ∧ T (W0,W1) ⇒ ϕ1 and Transitionn ≡ Tn ⇒ ϕn,

the algorithm shown in Figure 4 performs a forwards iteration of the state space.
Given a automaton A(ψ) and safety condition ϕ, the algorithm will check: (1)
that ϕ holds on all transitions leaving the initial states of the automaton, and
that (2) ϕ holds for up to K transitions from an initial state of the automaton.

j ← 1
if ¬Initial is satisfiable return error trace
j ← j + 1
while j ≤ K do

if ¬Transitionj is satisfiable return error trace
j ← j + 1

return ”K-Safe”

Fig. 4. K-step forwards iteration algorithm.

The above algorithm calls a SAT solver once in every iteration. In practice,
the algorithm performs better when l > 1 calls, namely “¬Transitionj satisfi-
able”, . . . , “Transitionj+l satisfiable”, to the SAT solver are combined to one
call, namely “¬(Transitionj ∧· · ·∧Transitionj+l) satisfiable”, to the SAT solver.
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Practical results from the pelican crossing example, show that verification
times are less than one second2. With inductive verification, verification of the
safety condition given in Section 5.1 fails for the induction step. With the pro-
posed bounded model checking approach, we were able to show that this was in
fact due to unreachable states. To show this, a bound size of six was required,
along with meta-reasoning about the automaton, namely, that six steps cover
all of its reachable states.

6.3 Unbounded model checking

Temporal induction [18] is a method that is based on strengthening the inductive
approach as e.g., given by Kanso [15]. As the name suggests, the verification
method still consists of two proof steps, namely a base case and an inductive
step. These proof steps are however used differently: the (negation of the) base
case is checked if it is satisfiable, the (negation of the) inductive step is checked
if it is unsatisfiable. Our presentation follows [10].

We define properties of a state sequence encoded by W0,W1, . . . ,Wn:

LFn ≡ Tn ∧ (
∧

0≤k<l≤n

¬(Wk ⇔Wl)) and safen =
∧

1≤j≤n

ϕj .

where (Wk ⇔ Wl) ≡
∧

i∈I i
(k) ⇔ i(l) ∧

∧
c∈C c

(k) ⇔ c(l); k, l, n ≥ 0. LFn

describes the state sequences of length n of an automaton which are “loop free”,
i.e. the states appearing in the sequence are pairwise different. The formula safen

encodes that all transitions between two consecutive states are safe. Using these
formulae, we can define base case and induction step of temporal induction:

Basen ≡ Init ∧ Tn ⇒ ϕn and Stepn ≡ Tn+1 ∧ LFn+1 ∧ safen ⇒ ϕn+1.

Figure 5 gives the temporal induction algorithm, similar to [18, 9].

n← 0
while true do

if ¬Basen is satisfiable return trace
if ¬Stepn is unsatisfiable return “Safe”
n← n+ 1

Fig. 5. Temporal induction algorithm.

Theorem 2. For all ladder logic formulae and safety conditions, temporal in-
duction terminates, is sound, and is complete.

2 All results presented in this paper are based on tests carried out using a 64-bit
computer, with a 3GHz quad-core processor and 8 GBytes of memory.
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Proof. (Only termination) Let ψ be a ladder logic formula. Let ϕ be a safety
condition. Given that the automaton A(ψ) is finite, we know that for some
k all state sequences longer than k include a state twice. Thus, the formula
Tk+1 ∧ LFk+1 is unsatisfiable. This implies that Stepk ≡ Tk+1 ∧ LFk+1 ∧ ϕk ⇒
safek is a tautology. Hence ¬Stepk is unsatisfiable.

The temporal induction algorithm fully automatically verifies our pelican cross-
ing example; no meta-reasoning was required. Once again, the verification time
was less than one second.

7 Program slicing

The proposed approaches for the verification of ladder logic programs quickly
give rise to large formulae to be verified. As the formula size increases, both
the space and time requirements increase. This increase leads to a rather small
bound3 on the number of iterations of a ladder logic program we can verify in a
feasible amount of time.

In our setting, the intuition behind slicing is that given a particular safety
condition for verification, the variables that occur within the safety condition
are only dependant on some part of the ladder logic program. Hence parts that
have no effect on the safety condition can be removed.

7.1 Algorithm for slicing ladder logic

We define the dependence between rungs in a ladder logic formula.

Definition 7 (Dependency relation). Let ψ = [R1, R2, . . . Rn] be a ladder
logic formula for some n ≥ 0. We define the relation dependant ⊆ {1, . . . , n} ×
{1, . . . , n} between rungs of the ladder logic program, as the transitive closure of

{(i, j) | j < i and c′j ∈ vars(ψi)}

where rung k has the form Rk ≡ c′k ⇔ ψk for 1 ≤ k ≤ n.

Using this notion of dependence, we define the slice of a ladder logic formula
w.r.t. a safety condition as:

Definition 8 (Slice). Given a ladder logic formula ψ = [R1, R2, . . . Rn], and
a safety condition ϕ. A slice ψϕ of ψ is an order preserving selection of rungs
such that the following two conditions hold:

– Rj ∈ ψϕ if cj ∈ vars(ϕ) ∨ c′j ∈ vars(ϕ).
– Rj ∈ ψϕ if Ri ∈ ψϕ and (i, j) ∈ dependant.

Given a slice ψϕ we define the sets

Î = vars(ψϕ) ∩ I and Ĉ = {c ∈ C | c′ ∈ vars(ψϕ) ∩ C ′}

of those input variables (state variables) that appear in the slice.
3 I.e., with 599 variables, approximately 100 iterations were possible.
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Note that this definition does not include a notion of minimality. Consequently,
a ladder logic formula ψ is always a slice of itself. If the safety condition ϕ ≡
True, then for every ladder logic formula ψ we have that the empty programme
ψϕ ≡ true is a slice. To ensure rung order is maintained, we compute a slice in
a backward fashion. The algorithm we present is due to [11].

Step 1 – Extract variables from safety condition. Given a safety condi-
tion ϕ of the form described in Section 5.1, we extract its variables: U = vars(ϕ).

Step 2 – Calculate dependant variables. Calculate all the variables of
the ladder logic formula that effect the variables in U . This step is repeated
for each rung until a fixed point within the variable set is reached. Figure 6
illustrates the code that could be used to perform this step.

Un+1 ← U
do

U ← U
Un+1 ← U
for i = n down to 1 do

if c′i ∈ Ui+1 then Ui ← Ui+1 ∪ vars(ψi) else Ui ← Ui+1

U ← U1

until U ⊆ U
return U

Fig. 6. Algorithm to compute step two.

Step 3 – Extract dependant rungs. Finally, using the variable set U
computed in step two, we remove all rungs that do not effect the safety condition.
To do this, we construct the set

index = {i ∈ {1, . . . , n} | ci ∈ U or c′i ∈ U}.

Now, we remove from the original program all rungs Ri whose indicies do not
appear in index. The result ψϕ is the sliced version of program ψ.

Figure 7 illustrates the effect of slicing the ladder logic formula of Figure 2
w.r.t. the safety condition presented in Section 5.1: The safety condition has four
variables, six out of the original eleven rungs remain.

[ crossing′ ⇐⇒ (req ∧ ¬crossing),
req′ ⇐⇒ (pressed ∧ ¬req),
tlag′ ⇐⇒ ((¬crossing′) ∧ (¬pressed ∨ req′)),
tlbg′ ⇐⇒ ((¬crossing′) ∧ (¬pressed ∨ req′)),
tlar′ ⇐⇒ crossing′,
tlbr′ ⇐⇒ crossing′]

Fig. 7. A Sliced version of our pelican crossing ladder logic formulae.



SAT-based Model Checking of Train Control Systems 85

7.2 Correctness of slicing

Given that slicing changes the ladder logic formulae under consideration, we
need to ensure that the validity of safety conditions is still upheld.

Throughout this Section we assume that ψϕ is the slice of a ladder logic
formula ψ = [R1, R2, . . . Rn] w.r.t. a safety condition ϕ, where Î is the set of
inputs of ψ which appear in ψϕ and Ĉ is the set of state variables of ψ required
by ψϕ – see Definition 8.

In order to compare the two automata A(ψ) and A(ψϕ) we first need to relate
their states. A(ψ) has maps µ : (I ∪ C) → {0, 1} as its states, while the states
of A(ψϕ) take the form of maps ν : (Î ∪ Ĉ) → {0, 1}. To this end, we define two
functions: |Î∪Ĉ maps states from A(ψ) to states from A(ψϕ), :: f maps a
state from A(ψϕ) to a state of A(ψ), where f is a valuation that describes how
we interpret the variables in (I ∪ C)− (Î ∪ Ĉ).

Definition 9 (Reducing/Extending a valuation).

1. Let µ be a state of A(ψ). Its reduction µ|Î∪Ĉ : Î ∪ Ĉ → {0, 1} w.r.t. Î ∪ Ĉ is
defined as µ|Î∪Ĉ(x) = µ(x) for all x ∈ Î ∪ Ĉ.

2. Let ν be a state of A(ψϕ). Let f : (I∪C)−(Î∪ Ĉ) → {0, 1} be an evaluation.
We define the extension of ν by f as (ν :: f) : C ∪ I → {0, 1} where

(ν :: f)(x) =

{
ν(x) if x ∈ Î ∪ Ĉ
f(x) otherwise

for all x ∈ C ∪ I.

Remark 2. We also apply reduction and extension to paired valuations. That is,
(µ ;µ′)|Î∪Ĉ = (µ|Î∪Ĉ) ;(µ′|Î∪Ĉ) is the paired evaluation obtained from individ-
ually reducing µ and µ′. ν :: f ; ν′ :: f ′ = (ν :: f) ;(ν′ :: f ′) is the evaluation
obtained by individually extending ν by f and ν′ by f ′ and then pairing the
results.

We now study how to relate transitions of A(ψ) to transitions of A(ψϕ): A
step in A(ψ) corresponds to a step in A(ψϕ); consequently, reachability in A(ψ)
implies reachability in A(ψϕ).

Lemma 1 (A(ψ) transitions correspond to A(ψϕ) transitions). Let µ and
µ′ be states of A(ψ).

1. µ ;µ′ |= ψ ⇒ µ ;µ′|Î∪Ĉ |= ψPϕ

2. If µ ;µ′ is reachable with respect to A(ψ) then
µ ;µ′|Î∪Ĉ is reachable with respect to A(ψPϕ).

Corresponding results hold for the reverse direction:

Lemma 2 (A(ψϕ) transitions can be extended to A(ψ) transitions). Let
ν and ν′ be states of A(ψϕ).
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1. Let ν ; ν′ |= ψϕ. Then for all f there exists a f ′ such that ν :: f ;µ′ :: f ′ |= ψ.
2. Let ν ; ν′ be reachable with respect to A(ψϕ). Then there exist f, f ′ such that

ν :: f ;µ′ :: f ′ is reachable with respect to A(ψ).

Using these lemmas we can prove that slicing is correct:

Theorem 3. Let ϕ be a safety condition over a ladder logic formula ψ. Then

A(ψ) |= ϕ ⇐⇒ A(ψϕ) |= ϕ.

8 Application and results

We summarise some results that have been obtained via a verification tool based
on the discussed methods. A detailed discussion of the implementation of the
tool, and the results are available in [13]. In total, two railway interlocking ladder
logic programs were verified, one containing 331 rungs with 599 variables, and
the other 238 rungs with 361 variables in total.

Overall, the results we have gained have been positive. For every safety con-
dition we have verified, the tool has either given a successful verification, or
a counter example trace. All results have been obtained within the region of
seconds.

8.1 Results of bounded model checking

The main success of the forward iteration approach proved to be the generation of
counter example traces. In all the verification results where inductive verification
via Kanso’s method [15] gave a counter example, the forward iteration approach
was successfully able to construct a counter example trace. This demonstrates
the need of tool supported verification: It turned out that the claimed to be
unreachable states – see the Introduction – actually are reachable. However,
they do not effect the safety of the system as they can be excluded thanks to
invariants. Such invariants have not been considered in our automaton model, as
in industry they are soft constraints known only to engineers. Such constraints,
however, are not part of the documentation for the interlocking control programs.

Results obtained show that forward iteration was possible up to two thousand
iterations before memory issues occurred. With the application of our slicing
algorithm, the number of iterations possible increased to twenty thousand. This
is a large number of iterations, however, it remains unknown how many iterations
would be required to verify all reachable states.

8.2 Results of temporal induction

The results obtained from the temporal induction approach are as expected.
Whenever inductive verification via Kanso’s method [15] succeeded, i.e., the
safety property held, the safety property was also provable via temporal in-
duction. Also, whenever a counter example was generated using the forward
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iterations technique, a counter example would be generated by temporal induc-
tion. These two results show that temporal induction works correctly. The full
power of temporal induction, however, is demonstrated by our Pelican crossing
example: only temporal induction is capable of verifying it fully automatically.

8.3 Results of slicing

All results obtained show that applying slicing to the formulae to be verified
resulted in large efficiency gains. Some analysis of the application of the slicing
algorithm have shown that the following reductions were possible:

– For interlocking one, the number of rungs contained in the ladder logic for-
mula, was reduced, on average from 331 rungs to around 60 rungs.

– For interlocking two, the number of rungs contained in the ladder logic for-
mula, was reduced, on average from 238 rungs to around 25 rungs.

Obviously, the resultant formula size is dependant on the safety condition
being verified. Hence it would be interesting to see the effect slicing has on more
complicated, larger interlockings.

9 Conclusion

We have completed a feasibility study into various techniques for SAT-based
model checking of Westrace interlockings. We have provided a modelling process
for Westrace interlockings via propositional logic and given an automaton theo-
retic semantics for this propositional model. We have studied in some depth, the
verification processes of bounded model checking and unbounded model checking
via temporal induction. As a natural continuation from this, we have reviewed
how a slicing algorithm can be applied to reduce the complexity of the verifi-
cation problem, showing the correctness of its application. The overall outcome
being the development of a verification tool, with varied verification techniques
on offer. This tool has been applied to verify real world interlockings, with the
main results being:

– The approaches we propose work. That is, an interlocking can successfully
be verified with respect to some safety condition. The result being either
that the interlocking is safe, or that a counter example trace is generated.

– The approaches we propose scale up to real world systems.
– SAT-based verification is a successful method of verifying large systems.

Future work will include the removal of functional dependencies [14] and the
verification of further interlockings.
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Abstract. We subsume Communication Spaces (CS) as communication-
based systems taking into account the central notions of interpretation of
content in contexts, communication roles, and allowing for human-centric
demands, e.g. adaption to environment and preferences. Since most of
the well-known formal modeling approaches are adequate only for spe-
cific aspects or limited views of systems considered as CS, in this article
a new formal approach is advocated. This approach is an integration
and extension of the well-established modeling techniques of algebraic
high-level Petri nets and rule-based graph transformation, intended to
cover the main aspects of CS and to analyze and verify properties specific
to them. We demonstrate the new approach of Algebraic Higher-Order
Net with Individual Tokens (AHOI nets) on an example modeling of the
widely known Internet telephone software Skype. This allows us to dis-
cuss the advantages of AHOI nets w.r.t. needs of a basic modeling of
CS.

1 The Challenges of Communication Spaces

The notion of Communication Spaces (CS) is not intended to be fixed formally.
Moreover, it is meant to serve as a characterizing concept of communication
systems featuring specific aspects, e.g.:

– Contextuality of contents that is transmitted (via channels) by communicat-
ing entities (actors).

– Dynamics in the system structure, so that actors may move in CS, even join
or leave several different CS.

– Preferences, access rights, and roles are to be respected.

Typical examples that can be considered from the CS viewpoint are Internet-
based applications like Skype, Facebook, or SecondLife; and also Mobile Ad-
hoc networks or SmartHomes, in which appliances are connected intelligently
? This work has been supported by the Integrated Graduate Program on Human-
Centric Communication at TU Berlin (http://www.h-c3.org/ra_en.html#RAE) and
by the research project forMAlNET (http://tfs.cs.tu-berlin.de/formalnet) of
the German Research Council
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to offer increased comfort to their inhabitants. It is desirable to have a formal
modeling technique for CS, so that we can specify the features of such systems
unambiguously and are able to simulate, test, and analyze/verify1 them, using
the formal semantics of the modeling technique. We have observed that most of
the well-known modeling techniques like UML and actor systems [1] or formal
specification techniques like process algebras [2], low-level and high-level Petri
nets [3,4], algebraic specification [5] and graph transformation [6], and different
kinds of logic are only adequate to model and/or analyze specific aspects of
CS. Plain Petri nets for example have a static structure. Graph transformation
systems in contrast are dynamic in their structure but lack a description of
system behaviour. Of course, appropriate graph transformation systems may
also be used to simulate e.g. the behaviour of Petri nets but it seems advisable to
distinguish system behaviour from reconfiguration and to possibly use standard
results for analysis. Another thing to mention is that we believe that visual
diagrammatic models as Petri nets and graphs can have advantages for system
modeling w.r.t readability and understandability, though there is no standard
measure for these properties.

As a consequence of the above, we advocate a new integrated formal modeling
technique for CS. In this paper, however, we only give an informal introduction
to our new visual modeling technique and demonstrate how it can be used to
model a typical example of a CS: the Internet telephone software Skype.

2 Modeling of CS with a new Kind of Petri Nets

In this section, we formulate some main requirements for modeling of CS and
give an informal overview to a modeling approach, called AHOI Petri nets.

2.1 Requirements for Modeling of CS

An adequate formal modeling approach would have to cover at least three main
aspects of CS:

1. Data and content in the CS and the knowledge of actors (their content
spaces).

2. Structure of the CS, which actors are connected to each other (in short, the
topology). In particular, the structure should be dynamic to allow actors to
enter and leave.

3. Interactions in and between different CS, transmission of data

According to our experience, no single classic modeling approach is powerful
enough to achieve this. For this reason, we propose a new integrating approach:
reconfigurable Algebraic Higher-Order Petri nets with Individual tokens (AHOI
nets).
1 General interesting properties are realted to consistency, safety and security require-
ments, liveness, termination etc.
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Definition 1 (Algebraic Higher-Order Nets with Individual Tokens).
An Algebraic Higher-Order Net with Individual Tokens (AHOI net) is a tuple
(AN , I, m) where

– AN is an Algebraic High-Level (AHL) Net as in [7] whose algebra features a
suitable token sort for some kind of Petri net and operations for calculating
activated transitions and the results of firing steps. The eponymous example
with low-level place/transition nets as tokens are the Algebraic Higher-Order
nets introduced in [8]2.

– I is the (possibly infinite) set of individual tokens of the AHOI net.
– m : I → (AAN × PAN ) is the marking function, assigning each individual

token to a pair (a, p), representing an algebraic value a on place p in AN .

A reconfigurable AHOI net is an AHOI net with a set of transformation
rules. The main advantage of Petri nets with individual tokens to Petri systems
following the collective token approach (where marking are elements of the com-
mutative monoid (AAN ×PAN )⊕) is that we can formulate transformation rules
in the sense of the double-pushout (DPO) approach in [6], so that these rules also
can change markings. In regular AHL nets, i.e. with collective token markings,
changing of markings via DPO transformation is not possible due to technical
restrictions. The firing behaviour of an AHOI net (AN , I, m) with finite I is
equivalent to the behaviour of AN with the marking

∑
i∈I

m(i).

As we will see in the next section’s example, AHOI nets are powerful enough
to cover the main aspects of CS by integrating Petri nets (topology), abstract
data types (content spaces), and net transformation (interaction and dynamics).
However, to be able to follow this example, we first give an informal introduction
to AHOI nets in a simplified notation, while a formal theory of AHL nets with
individual tokens is under development in a technical report to appear.

2.2 AHOI Nets in a Nutshell

Instead of reviewing Algebraic High-Level nets we will go through a quick tutorial
of AHOI nets, for which we avoid the formal notation and consider a simplified
visual representation: Fig. 1 shows an AHOI net component, with rectangles as
transitions and ovals as typed places that contain tokens. Arcs inscripted with
terms connect places and transitions to form a bipartite graph. For example,
there are the places User of type SkypeName, Template of type DataUnit, and
State of type State, containing e.g. the tokens Alice and Offline, which represent
values of the correspondent data types. Especially, we have a token DU(Alice)
being itself a Petri net3, which we consider as higher-order tokens (or object
nets, to distinguish them from the containing system net). These three places
constitute the predomain of transition activate because of the arcs pointing to
2 The idea of nets in nets stems from [9] as an approach to represent mobile agents in
a Petri net

3 This net is represented as a value of an appropriate algebraic type for Petri nets.
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the transitions from these places. Similarly, User, Online, Ready2Talk, and Tem-
plate are the postdomain of activate, because of the arcs pointing to them from
activate.

Fig. 1. AHOI net component for a Skype client

We call a transition enabled if on each of its predomain places we can find
a token so that the set of selected tokens is consistent with the arc inscriptions.
Basically, a token selection is consistent if the tokens correspond with the definite
arc terms and we can find a consistent assignment for the arc variables to the
selected tokens4. In Fig. 1 for example, activate is enabled because we can assign
u=DU(Alice), n=Alice, and the token Offline corresponds directly to the arc’s
term. If a transition is enabled, we can fire it, which means that the predomain
tokens are removed and for each term on the postdomain arcs, a token according
to the variable assignment and arc inscriptions is added to the corresponding
place.

4 Actually, in general AHOI nets arcs can have arbitrary terms with variables, e.g.
op(y, z, . . .), and transitions additionally may have firing conditions like op1(x) =
op2(y, z, . . .) according to the signature of the system net’s algebra. But for the
example, we only consider definite values and variables as arc inscriptions, as well
as the simple condition pattern v!=Val, denoting that additionally the token value
Val can not be assigned to variable v.
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Note that e.g. place User is in the predomain and also in the postdomain of
activate with the same arc inscription on the in- and outgoing arc, so its marking
will not change on firing activate. Due to the arc to Ready2Talk inscripted with
the same variable u as the arcs from and back to Template, firing activate copies
the token assigned to u to both places. In short, if we fire activate, the result will
be that DU(Alice) will have been copied to Ready2Talk and the token Offline
on State will be replaced by token Online.

To reconfigure AHOI nets we use the rule-based net transformation approach
in [6,10]. Transformation rules are spans of morphisms L← K → R with a left-
hand side L, a right-hand side R, and an interface K being the intersection of L
and R, all these being AHOI nets. In Fig. 2, we consider an example AHOI net
rule p : L← K → R to demonstrate transformation: In general, to apply p to a
net N we need to find an occurrence of L in N , specified by an injective AHOI
net morphism o : L → N . To get the context C, we remove everything that is
matched by parts of L and is not preserved in K and finally add in the result
net N ′ everything found in R that is not already present in the interface K.
Altogether, Fig. 2 shows a net transformation via rule p : L ← K → R, where
N can be considered as gluing of L and C along K and N ′ as gluing of R and
C along K5. Note that also the markings of places p1 and p3 are changed by
this rule application.

Fig. 2. Example AHOI net transformation

AHOI net morphisms (e.g. the match) must fulfill some structural conditions
to ensure that rule applications yield valid AHOI nets [11]. Because L and R

5 The resulting squares in Fig. 2 are pushouts in the category of AHOI nets, i.e. N
is the gluing of L and C, where the interface K specifies items to be identified;
analogously for N ′.
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are usually sufficient to understand which parts a rule deletes and creates, we
mostly omit K and denote a rule as L→ R in a compact notation.

3 Modeling Skype with AHOI Nets

Skype6 is a widely used program for Internet telephony, offering easy to use
(synchronized) data exchange and conferences. With its contact and privacy
management, users can decide who and how other users can contact them. We
discuss how Skype, as a typical representative offering many CS-relevant fea-
tures, can be modeled with AHOI nets. First, we have to make some general
decisions about what aspects we focus on and how to represent these.

Skype is not open source, there is no (publicly available) formal model, espe-
cially no one according to the CS viewpoint, and Skype uses proprietary network
protocols. Therefore, we limit ourselves to modeling observable behavior only,
i.e. to activities users can perform in their Skype client software and the direct
effects of these activities caused in the Skype system. Our example follows these
guidelines:

– A single AHOI net models the whole Skype system. Each user, resp. his client
instance, is represented by an (initally discrete) component of this system
net.

– We strictly distinguish user-triggered client behavior and system reactions.
User actions are modeled by transitions in the corresponding client compo-
nent; a user can act if at least one of its client’s transitions is enabled. In
contrast, global system actions are modeled by rules that reconfigure the
system. To be more specific: An action in a client can either alter the client’s
configuration directly (like (de)activating the client, modifying privacy set-
tings etc.) or represent a request to the Skype system to perform a global task
(like establishing connections or transmitting data) that may extend/restrict
possible actions of the client. System operations executing such requests are
realized by rule applications, which possibly create or remove transitions of
a client net component.

– To keep the intuitive visual representation of AHOI nets comprehensible, we
assume the system to apply cleaning-up rules on temporary net structures
after the activity that they were created for has been completed. Moreover,
when simulating a system, the modeler should be able to grasp the system’s
state very quickly.

3.1 Skype User Clients as AHOI Components

Fig. 1 shows the AHOI component for the Skype client of a user “Alice”. Each
client component has the following basic structure:

6 Skype is free to use and freely available at http://www.skype.com.

http://www.skype.com
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– One place typed by State, which is also named State, represents the current
state of a Skype client. The data type State consists of the values Offline,
Online, SkypeMe, and DND. The example client in Fig.1 is in state Offline.

– SkypeName places carry identities of Skype users, e.g. the token Alice on
the place User indicates that Alice is the client’s owner and the tokens on
Contacts represent two Skype users she has in her contact list7. The place
WhitePages is shared between all user clients and carries tokens correspond-
ing to the tokens on the User places of all existing clients. A SkypeName
token on place CallRequest would announce a request to the system for con-
nection to the correspondent client, and similarly on place ContactRequest
for exchange of contact data.

– DataUnit higher-order tokens, as shown in the left of Fig. 1, are a kind
of agents that allow their owner client to send data to and receive data
from other clients. The owner is indicated by the SkypeName token on the
unit’s place Owner and we denote a unit with owner X as DU(X). The type
Data may represent audible, textual, graphical etc. data, which a unit can
generate, send, and receive by firing its transitions.

– If there is a token on the client’s place Ready2Talk the client is supposed
neither to be offline nor to participate in another call/conference, hence to
be able to accept incoming calls.

An example firing step for activating the client has been discussed in Sect. 2.2.
The remaining possible firing steps in Fig. 1 are changing the client’s state to
DoNotDisturb or SkypeMe by firing the corresponding transitions, deactivating
the client by firing deactivate, which would delete the DataUnit token from
Ready2Talk, or announcing requests for a either a connection to another client
by firing requestCall or for contact exchange by firing requestContact. In the
following section, we will see how the system reacts on requests by reconfiguring
clients to allow more activities.

3.2 Request for Contact

In the following we suppose a minimal example of a system net that contains
two client net components like the one shown in Fig. 18. One has, as depicted,
the tokens Alice on its User place, Carol on its Contacts place, and the object
net token DU[Alice] on its Template place. The second is supposed to belong to
a user named Bob, hence having the tokens Bob on its User place, DU[Bob] on
its Template place and an empty Contacts place. Both clients are considered to
be online, having the corresponding token on their State place, respectively.

7 The data type SkypeName is some appropriate type for distinguishing identities, e.g.
unique strings or integers.

8 Note that these client components can be created in a system net (and be deleted)
with reconfiguration rules dynamically! This realizes registration and resigning of
Skype users. Basically, this rule consists of an empty left-hand side and the net in
Fig. 1 as the right-hand side.
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Fig. 3. Rule CreateContactExchange creating structure for contact exchange

Alice now wants to talk to Bob, which she would realize by firing requestCall,
so that a token Bob is put on her CallRequest place. But she does not have his
SkypeName token on her Contacts place, yet. So, before calling him she has to
ask for his permission to add his contact to her contact list, represented by her
Contacts place. This is according to the default procedure in Skype to follow.

To accomplish an exchange of user contacts, Alice fires her requestContact
transition, so that the token Bob (assigned to the variable n in this firing step)
is copied from the WhitePages place to Alice’s ContactRequest place.

Remember, we want to separate strictly user behavior in the client from reac-
tions by the system, following the modeling principles we stated at the beginning
of this section. So, we let the Skype system react the Alice’s request by applying
the transformation rule CreateContactExchange shown in Fig. 3, extending the
possible behavior of Bob’s client.

In the left-hand side L of this rule we have three places that should be
matched on the corresponding places of the requesting client and two places
of the responding client9. Further, to be applicable, this rule needs a token
value that can be assigned to the token variable User, one on ContactRequest
and User2 each. In our example scenario this would be the two tokens Bob
indicating the user of Bob’s client component and the request Alice just has
announced before.

The effect of applying this rule is the creation of the structure in the right-
hand side R and removing the request token on the place matched by Con-
tactRequest. In the manipulated system net, the two clients are now connected
with this structure and we interpret the newly created transitions as additional
behavior for Bob’s client. E.g., Bob can fire the transition deny, which moves
a simple control token (assigned to variable c) to the Finished place and con-
cludes the contact exchange request without further effect. Alternatively, he may
fire accept which, besides moving the control token, will copy a token Alice to
the Bob’s Contacts place and a token Bob to Alice’s Contacts place. This fol-
9 The dashed frames and the boxes describing the roles in the middle of the rule
are just a hint to understand to which component the matched places should be
connected. They are actually not part of this or the following rules’ syntax.
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lows from having applied the rule matching User1 place to Alice’s User place,
which surely carries a token Alice that, on firing accept, is assigned to variable
n1 and hence copied to Bob’s Contacts place. The assignment of the token Bob
(matched by the rule’s token variable User before) to variable n2 and copying
it to Alice’s Contacts place happens analogously.

In short, after Bob has fired accept, he now effectively has Alice on his contact
list and vice versa and Alice is finally able to call him.

3.3 Cleaning the Model by Removing Dispensable Structures

After a request for contact exchange has been accepted or denied the additional
structure created can be removed because none of the new transitions can fire any
more, due to the control token being moved to Finished. We just can remove this
now useless structure by the reversed creation rule, i.e. a rule that has basically
CreateContactExchange’s R as left-hand side and L as right-hand side. We don’t
carry this out in more detail10 in this article, it just should demonstrate how
reversed rules can be used in principle to keep the overall model lean and clear
without confusing left-overs.

3.4 Creating Conferences

Fig. 4. Rule CreateConference creating a conference structure

Now, Alice wants to invite Bob to a direct call11 and fires requestCall in
her client component so that the token Bob that has been created before in
10 Of course, the deleting rule is not supposed to delete a control token on the Request

place and to create a User token as would do the simply reversed rule, but rather
just to delete a control token on Finished.

11 In Skype, you may invite additional contacts to a running conversation, so we con-
sider a direct call just as an (initial) conference with two participants.
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the contact exchange is copied to her CallRequest place. To allow the system to
react to the request, we formulate the rule CreateConference depicted in Fig. 4.
Similar to the previous rule, the four upper framed places in the left-hand side
L should match the corresponding places of the conference host component,
whereas the lower ones belong to the called client component. When applicated
to our running example, the rule creates the conferencing structure in R, moves
Alice’s DataUnit token DU[Alice] from the Ready2Talk to the new Conferencing
place, and deletes the request token Bob on CallRequest.

Being the host, Alice is attending the conference immediately after rule ap-
plication; she is unavailable to other calls while her conference is running. Her
only option is to quit (by firing the appropriate transition) and terminate the
whole conference12. Bob may join, which would move his DataUnit token to
Conferencing as well.

The conference is established now and we discuss the transitions fireDU and
kick/leave in the following subsections.

3.5 Transmitting Data

We assume that Bob has joined the conference, so that his DataUnit token is
now on the Conferencing place that just has been created by the rule CreateCon-
ference. Alice fired send in her DataUnit object net DU[Alice]13, which copied
the token “Hello!” from her unit’s Storage to its Out place (cf. the left of Fig.1).
We interpret a token on a DataUnit’s Out place as a request to distribute the
token value to all other DataUnits in the same conference.

The (vertically depicted) rule Transmit in Fig. 5 is a schema14 whose in-
stances each match a DataUnit token sender and a fixed number of receiver
units to realize multicasting of data on a conference place; in our example we
consider just Bob as a single receiver. In the right-hand side R, the matched
tokens are replaced with algebraically calculated object nets, for which we use
the following operations that we provide in the AHOI net’s algebra:

– out : DataUnit → Data yields the token value on the Out place of the
DataUnit passed as argument of this operation.

– send : DataUnit × Data → DataUnit returns the passed DataUnit but
removes the value of the Data argument from the unit’s Out place.

12 We assume the transition quit to have a firing condition, so that only DU[Alice] can
be assigned to u. This is the reason why we need quit to be connected to Alice’s
User place; it needs to access her SkypeName token value.

13 To fire object net transitions, we use the fireDU transition that has been created
with the conference structure. It takes an object net token assigned to variable u,
calculates algebraically the net that results after firing an enabled transition inside
the object net u represents, and returns the fired net as a new object net token back
to the conference place. For this we make use of the assumed operations on the Petri
net token sort of AHOI nets. You may look at [8] for details of this construction.

14 For now, we assume that we have a rule for each possible conference size, i.e. the
number of participants. Recently, we proposed the more flexible and advanced ap-
proach of Amalgamated Rules for multicasting in [12].
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Fig. 5. Rule schema Transmit distributing data among DataUnit tokens

– rec : DataUnit×Data→ DataUnit is similar to operation send but returns
the passed DataUnit where the Data argument value has been added to the
unit’s In place.

Now we can understand the terms in the right-hand side of Transmit :
send(sender, out(sender)) is basically the DataUnit sender where the token has
been removed from itsOut place. Similarly, each term rec(receiverX, out(sender))
is the corresponding receiver DataUnit to which the Data token from the sender
is added to. The green object nets besides the rule illustrate this. After apply-
ing this rule to our example, Bob can fire receive in his DataUnit to gather
the transported Data from his input place In and the transmission has been
completed.

To avoid incomplete transmissions (e.g. by applying a Transmit rule instance
with just one receiver on a conference with three participants, hence with two
receivers) and transmissions after the host has quit (which should immediately
terminate the conference) we introduce negative application conditions (NACs)
for rule Transmit. A rule is not applicable if there exists a valid occurrence for at
least one of its NACs. With NACcomplete we ensure that the rule can be applied
only if the left-hand side Lmatches all tokens on Conferencing so that there is not
another unmatched DataUnit token left, allowing only complete transmissions to
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all participants. NACforbidHostQuit prohibits a rule to be applied after the host
has quit the conference (when his DataUnit can be located on his Ready2Talk
place).

3.6 Joining and leaving Conferences

In Skype, the conference host may invite more participants to a running con-
ference. In our example, Alice can fire another callRequest while she hosts a
conference, so that the rule InviteParticipant in Fig. 6 can be applied. It simply
connects another client to the conference like the intial rule for creating confer-
ences before. Note that the invited participant does not necessarily have to be
ready to talk to get invited, the rule rather ensures that Alice as the host has
not quit the conference by requiring her DataUnit on the Conferencing place.

Fig. 6. Rule InviteParticipant connecting invited participants to conference

Every participant can leave the conference by firing kick/leave, but this can
also be used by Alice to exclude participants from the conference. Note that Alice
can only quit the conference via her own quit transition because the conference
is considered to be finished when she does this. Other rules like Transmit respect
that and do not allow to continue the conference so that the participants only
option is to leave in this case. Again, a user firing kick/leave just announces
a request that the system answers with application of rule KickParticipant in
Fig. 7, which disconnects the client from the conference and moves its DataUnit
token back to its Ready2Talk place.

It should be imaginable that an appropriate rule can be formulated to re-
move a conference whose participants all have left and whose host has quit,
possibly with some NACs. This concludes the example scenario in a state where
Alice’s and Bob’s clients have exchanged contacts and data and are now again
unconnected client components.
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Fig. 7. Rule KickParticipant disconnecting participants who left a conference

4 Conclusion and Outlook

After introducing the general notion of Communication Spaces (CS), we dis-
cussed the new approach of AHOI nets as a formal modeling technique for CS.
The examples, concerning particular features offered by Skype, show that this
approach and the chosen modeling principles are powerful enough for first ade-
quate modeling approach of CS. We have shown how we need to employ all the
specialities of the AHOI nets as an integrated modeling technique:

– High-level data tokens are needed to represent data and user identities for
effectively restricting communication.

– Moreover, higher-order tokens containing high-level nets are again used to
represent users and their behavior and data in different system parts as
conferences and chats [8].

– With reconfigurable Petri nets we enable the system to adapt itself to user
requests and allow for a dynamic set of actors at system runtime. For more
detail on the necessity of reconfiguration for modeling multicasting in dy-
namical Petri net systems we refer to [12].

– Petri nets with individual tokens [11] feature distinguishable tokens with
identities, which are a technical premise to be able to formulate marking-
changing rules. We have proven the existence of a weak adhesive high-level
replacement system [6] for these nets, yielding a rich transformation theory.

To improve modeling usability, we plan to examine i.a. the following exten-
sions of AHOI nets:

– An explicit control structure for defining rule sequences to ensure and enforce
cleaning-up reconfigurations to be performed directly after the correspondent
activity has terminated. Additionally, firing of transitions could be related to
the application of particular rules and be comprised in the control structure.

– Amalgamated rule applications are similar to the "apply as long as possible"
control structure, but in contrast, an amalgamated rule is applied to all
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possible matches in the same step. With this technique, we can realize the
schema of rule Transmit without explicitly formulating rules for all possible
conference sizes. Moreover, we need this extension for non-local consistency-
related concepts like Skype’s Shared Groups, which are synchronized contact
lists distributed between several clients. We contributed a first idea of how
amalgamated rules can be used for multicasting data instead of the informal
rule schema we used to formulate the rule Transmit in Fig. 5 [12].

Now that our formalism enables us to represent and simulate a model like
Skype with the characterizing features of a CS, the most important part of our
future work is to analyze and verify important properties of Skype in partic-
ular and to find/derive important properties we can prove for CS in general
when using AHOI nets and the presented modeling approach with its principles
in general. Examples of such properties are e.g. that a contact’s owner must
have confirmed all correspondent entries in his contact list, or that the system
respects the clients’ privacy settings when establishing communication via re-
configuration. To verify such properties we intend to make use of the rich theory
of (high-level) Petri nets [4] and high-level replacement systems [6], especially
the result for consistency and independency. We are currently elaborating the
transformation theory of nets with individual tokens [11] by lifting the results
of the collective approach and developing new analysis concepts.

To provide tool support for modeling and analyzing, we are also extending a
graphical editor as an Eclipse plugin for a simplified kind of the AHL nets in [8]
to support the AHOI formalism as we introduced it in this article.
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